Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is...Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is resulted from user’s preference mechanisms. Characteristics of the two noises are presented aiming at the application of interac- tive genetic algorithms in dealing with images. The evolutionary phases of interactive genetic algorithms are determined according to differences in the same individual’s fitness among different generations. Models for noises in different phases are established and the corresponding strategies for reducing noises are given. The algorithm proposed in this paper has been applied to fashion design, which is a typical example of image processing. The results show that the strategies can reduce noises in interactive genetic algorithms and improve the algorithm’s performance effectively. However, a further study is needed to solve the problem of determining the evolution phase by using suitable objective methods so as to find out an effective method to decrease noises.展开更多
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi...We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.展开更多
This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this pa...This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.展开更多
基金Project 60575046 supported by the National Natural Science Foundation of China
文摘Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is resulted from user’s preference mechanisms. Characteristics of the two noises are presented aiming at the application of interac- tive genetic algorithms in dealing with images. The evolutionary phases of interactive genetic algorithms are determined according to differences in the same individual’s fitness among different generations. Models for noises in different phases are established and the corresponding strategies for reducing noises are given. The algorithm proposed in this paper has been applied to fashion design, which is a typical example of image processing. The results show that the strategies can reduce noises in interactive genetic algorithms and improve the algorithm’s performance effectively. However, a further study is needed to solve the problem of determining the evolution phase by using suitable objective methods so as to find out an effective method to decrease noises.
基金supported by National Natural Science Foundation of China (No.60775044)the Program for New Century Excellent Talentsin University (No.NCET-07-0802)
文摘We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.
基金supported by the National Natural Science Foundation of China(61302145)
文摘This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.