Immersive services are the typical emerging services in current IMT-2020 network.With the development of network evolution,real-time interactive applications emerge one after another.This article provides an overview ...Immersive services are the typical emerging services in current IMT-2020 network.With the development of network evolution,real-time interactive applications emerge one after another.This article provides an overview on immersive services which focus on real-time interaction.The scenarios,framework,requirements,key technologies,and issues of interactive immersive service are presented.展开更多
The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyp...The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes.展开更多
A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal par...A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal particles is used in the discrete element method. Instead of a collision model of circular particles, the collision model used in our method can deal with particles of more complex shape and efficiently simulate the effects of shape on particle–particle and particle–wall interactions. For two particles falling under gravity, because of the edges and corners, different collision patterns for circular and polygonal particles are found in our simulations. The complex vortexes generated near the corners of polygonal particles affect the flow field and lead to a difference in particle motions between circular and polygonal particles. For multiple particles falling under gravity, the polygonal particles easily become stuck owing to their corners and edges, while circular particles slip along contact areas. The present method provides an efficient approach for understanding the effects of particle shape on the dynamics of non-circular particles in fluids.展开更多
In this paper,a mathematical model is developed to study the wave propagation in an infinite,homogeneous,transversely isotropic thermo-piezoelectric solid bar of circular cross-sections immersed in inviscid fluid.The ...In this paper,a mathematical model is developed to study the wave propagation in an infinite,homogeneous,transversely isotropic thermo-piezoelectric solid bar of circular cross-sections immersed in inviscid fluid.The present study is based on the use of the three-dimensional theory of elasticity.Three displacement potential functions are introduced to uncouple the equations of motion and the heat and electric conductions.The frequency equations are obtained for longitudinal and flexural modes of vibration and are studied based on Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity.The frequency equations of the coupled system consisting of cylinder and fluid are developed under the assumption of perfectslip boundary conditions at the fluid-solid interfaces,which are obtained for longitudinal and flexural modes of vibration and are studied numerically for PZT-4 material bar immersed in fluid.The computed non-dimensional frequencies are compared with Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity for longitudinal and flexural modes of vibrations.The dispersion curves are drawn for longitudinal and flexural modes of vibrations.Moreover,the dispersion of specific loss and damping factors are also analyzed for longitudinal and flexural modes of vibrations.展开更多
文摘Immersive services are the typical emerging services in current IMT-2020 network.With the development of network evolution,real-time interactive applications emerge one after another.This article provides an overview on immersive services which focus on real-time interaction.The scenarios,framework,requirements,key technologies,and issues of interactive immersive service are presented.
基金supported by the National Natural Science Foundation of China(11072155 and 11232010)Doctoral Fund of Ministry of Education of China(20100073120009)
文摘The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes.
基金This study was funded by the National Science Foundation of China (Grant No. 11272176).
文摘A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal particles is used in the discrete element method. Instead of a collision model of circular particles, the collision model used in our method can deal with particles of more complex shape and efficiently simulate the effects of shape on particle–particle and particle–wall interactions. For two particles falling under gravity, because of the edges and corners, different collision patterns for circular and polygonal particles are found in our simulations. The complex vortexes generated near the corners of polygonal particles affect the flow field and lead to a difference in particle motions between circular and polygonal particles. For multiple particles falling under gravity, the polygonal particles easily become stuck owing to their corners and edges, while circular particles slip along contact areas. The present method provides an efficient approach for understanding the effects of particle shape on the dynamics of non-circular particles in fluids.
文摘In this paper,a mathematical model is developed to study the wave propagation in an infinite,homogeneous,transversely isotropic thermo-piezoelectric solid bar of circular cross-sections immersed in inviscid fluid.The present study is based on the use of the three-dimensional theory of elasticity.Three displacement potential functions are introduced to uncouple the equations of motion and the heat and electric conductions.The frequency equations are obtained for longitudinal and flexural modes of vibration and are studied based on Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity.The frequency equations of the coupled system consisting of cylinder and fluid are developed under the assumption of perfectslip boundary conditions at the fluid-solid interfaces,which are obtained for longitudinal and flexural modes of vibration and are studied numerically for PZT-4 material bar immersed in fluid.The computed non-dimensional frequencies are compared with Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity for longitudinal and flexural modes of vibrations.The dispersion curves are drawn for longitudinal and flexural modes of vibrations.Moreover,the dispersion of specific loss and damping factors are also analyzed for longitudinal and flexural modes of vibrations.