An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple ...An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes.展开更多
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of...Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.展开更多
In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching th...In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching the fading factor based on the Least Squared Estimation. In hybrid estimation, the well known Interacting Multiple Model (IMM) Technique can model the change of the system modes. So one can design a new adaptive filter — SIMM. In this filter, our modified STF is a parameter adaptive part and IMM is a mode adaptive part. The benefit of the new filter is that the number of models can be reduced considerably. The simulations show that SIMM greatly improves accuracy of velocity and acceleration compared with the standard IMM to track the maneuvering target when 2 model conditional estimators are used in both filters. And the computation burden of SIMM increases only 6% compared with IMM.展开更多
针对常规线性卡尔曼滤波越来越不能满足多机动目标跟踪精度需求的问题,提出一种基于自适应多模型粒子滤波的协同跟踪方法.首先,主车和协同车分别执行自适应交互式多模型粒子滤波(adaptive interactive multi model particle filter,AIMM...针对常规线性卡尔曼滤波越来越不能满足多机动目标跟踪精度需求的问题,提出一种基于自适应多模型粒子滤波的协同跟踪方法.首先,主车和协同车分别执行自适应交互式多模型粒子滤波(adaptive interactive multi model particle filter,AIMM-PF)算法,获得环境中目标车辆的运动状态;其次,协同车通过车车通信将跟踪到的目标状态发送给主车;最后,利用基于匈牙利算法和快速协方差交叉算法的数据关联和数据融合技术实现多机动目标的协同跟踪.搭建了V2V通信、雷达和定位仿真系统,选定两辆智能车作为主车和协同车,感知并跟踪200 m范围内的7辆目标车,进行了仿真试验.结果表明,与传统的单车跟踪相比,协同跟踪扩大了感知范围,且在不影响跟踪效率的情况下使跟踪误差降低了31.1%.展开更多
多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数...多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数据关联-交互式多模型(Generalized Probability Data Association-Interacting Multiple Model, GPDA-IMM)算法,GPDA运算量小,IMM综合了无迹和容积卡尔曼滤波和粒子滤波多模型滤波的特点,且优化权重因子,达到了较好跟踪性能。最后,通过仿真平台模拟8个运动目标的现实场景,结合时间管理和目标跟踪调整回访率,进行大量的仿真实验,证明了算法对不同目标类型和机动状态的有效性和实用性。展开更多
基金the University of Tabriz through a Grant scheme No.808.
文摘An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes.
文摘Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.
基金National Natural Science Foundation of China !( No.69772 0 3 1)
文摘In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching the fading factor based on the Least Squared Estimation. In hybrid estimation, the well known Interacting Multiple Model (IMM) Technique can model the change of the system modes. So one can design a new adaptive filter — SIMM. In this filter, our modified STF is a parameter adaptive part and IMM is a mode adaptive part. The benefit of the new filter is that the number of models can be reduced considerably. The simulations show that SIMM greatly improves accuracy of velocity and acceleration compared with the standard IMM to track the maneuvering target when 2 model conditional estimators are used in both filters. And the computation burden of SIMM increases only 6% compared with IMM.
文摘针对常规线性卡尔曼滤波越来越不能满足多机动目标跟踪精度需求的问题,提出一种基于自适应多模型粒子滤波的协同跟踪方法.首先,主车和协同车分别执行自适应交互式多模型粒子滤波(adaptive interactive multi model particle filter,AIMM-PF)算法,获得环境中目标车辆的运动状态;其次,协同车通过车车通信将跟踪到的目标状态发送给主车;最后,利用基于匈牙利算法和快速协方差交叉算法的数据关联和数据融合技术实现多机动目标的协同跟踪.搭建了V2V通信、雷达和定位仿真系统,选定两辆智能车作为主车和协同车,感知并跟踪200 m范围内的7辆目标车,进行了仿真试验.结果表明,与传统的单车跟踪相比,协同跟踪扩大了感知范围,且在不影响跟踪效率的情况下使跟踪误差降低了31.1%.
文摘多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数据关联-交互式多模型(Generalized Probability Data Association-Interacting Multiple Model, GPDA-IMM)算法,GPDA运算量小,IMM综合了无迹和容积卡尔曼滤波和粒子滤波多模型滤波的特点,且优化权重因子,达到了较好跟踪性能。最后,通过仿真平台模拟8个运动目标的现实场景,结合时间管理和目标跟踪调整回访率,进行大量的仿真实验,证明了算法对不同目标类型和机动状态的有效性和实用性。