Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09...Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09) embedded in the Ga Sb barrier is calculated to be 0.53 e V(2.35μm),which makes the absorption range of In As Sb cover an entire range from short-wavelength infrared to long-wavelength infrared spectrum.The fabricated photodetector exhibits a narrow response range from 2.0μm to 2.3μm with a peak around 2.1μm at 300 K.The peak responsivity is 0.4 A/W under-500-m Vapplied bias voltage,corresponding to a peak quantum efficiency of 23.8%in the case without any anti-reflection coating.At 300 K,the photodetector exhibits a dark current density of 6.05×10^-3A/cm^2 under-400-m V applied bias voltage and 3.25×10^-5A/cm^2 under zero,separately.The peak detectivity is 6.91×10^10cm·Hz^1/2/W under zero bias voltage at 300 K.展开更多
Localized surface plasmon has been extensively studied and used for the photocatalysis of various chemical reactions.However,the different contributions between plasmon resonance and interband transition in photocatal...Localized surface plasmon has been extensively studied and used for the photocatalysis of various chemical reactions.However,the different contributions between plasmon resonance and interband transition in photocatalysis has not been well understood.Here,we study the photothermal and hot electrons effects for crystal transformation by combining controlled experiments with numerical simulations.By photo-excitation of Na YF4:Eu^(3+)@Au composite structure,it is found that the plasmonic catalysis is much superior to that of interband transition in the experiments,owing to the hot electrons generated by plasmon decay more energetic to facilitate the reaction.We emphasize that the energy level of hot electrons plays an essential role for improving the photocatalytic activity.The results provide guidelines for improving the efficiency of plasmonic catalysis in future experimental design.展开更多
The influence of the pressure transmission medium(PTM)on the excitonic interband transitions in monolayer tungsten diselenide(WSe2)is investigated using photoluminescence(PL)spectra under hydrostatic pressure up...The influence of the pressure transmission medium(PTM)on the excitonic interband transitions in monolayer tungsten diselenide(WSe2)is investigated using photoluminescence(PL)spectra under hydrostatic pressure up to 5GPa.Three kinds of PTMs,condensed argon(Ar),1:1 n-pentane and isopentane mixture(PM),and4:1 methanol and ethanol mixture(MEM,a PTM with polarity),are used.It is found that when either Ar or PM is used as the PTM,the PL peak of exciton related to the direct K-K interband transition shows a pressure-induced blue-shift at a rate of 32±4 or 32±1 meV/GPa,while it turns to be 50±9meV/GPa when MEM is used as the PTM.The indirect A-K interband transition presents almost no shift with increasing pressure up to approximatel.y 5 GPa when Ar and PM are used as the PTM,while it shows a red-shift at the rate of-17±7meV/GPa by using MEM as the PTM.These results reveal that the optical interband transitions of monolayer WSe2 are very sensitive to the polarity of the PTM.The anomalous pressure coefficient obtained using the polar PTM of MEM is ascribed to the existence of hydrogen-like bonds between hydroxyl in MEM and Se atoms under hydrostatic pressure.展开更多
Compared with the widespread exploitation of hot electrons in plasmonic nanoparticles(NPs),hot holes generated from plasmonic metal interband transitions,are often overlooked in photoelectrochemistry,including photoel...Compared with the widespread exploitation of hot electrons in plasmonic nanoparticles(NPs),hot holes generated from plasmonic metal interband transitions,are often overlooked in photoelectrochemistry,including photoelectrochemical sensing.Motivated by the subtle spectral overlap between the characteristic plasmonic bands of Ag NPs and interband transitions of Au,herein,we construct unusual core-shell Ag@Au NPs via an anti-galvanic reaction to promote the generation of hot holes.Benefiting from the unique plasmon resonances of Ag cores in specific wavelength regimes,Ag@Au can excite multiplied hot holes while Au cannot under the same conditions.With satisfactory accuracy and good practicability,the photoelectrochemical sensing platform based on Ag@Au NPs possesses a detection limit of 77 nmol/L for glucose,exhibiting significantly higher sensitivity compared to that using Au NPs.This work exemplifies the applications of interband hot-hole accumulation initiated by plasmons and may inspire more strategies to explore the utilization of hot holes in photoelectrochemistry.展开更多
The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al-Al2O3 core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al-Al2O3/nitrocellulose...The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al-Al2O3 core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al-Al2O3/nitrocellulose(NC) film are investigated by numerical calculations. Both the size-dependent interband transitions and frequency-dependent free electron damping of the nanometallic aluminium are taken into account in the calculations. Oxidation effect of nanoaluminium is also analysed. It is shown that oxidation may enhance but may also reduce the optical absorption, depending on the excited light energy and initial dimension of nanoparticle. Metal core size and excited light energy dominate the absorption characteristic. The absorption ability of ellipsoidal nanoparticles is larger than that of spheroidal nanoparticles and increases by the square index as the aspect ratio increases. These calculations will provide some significant theoretical guidance for the preparation and laser ignition of nanoenergetic materials.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11574362)
文摘Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09) embedded in the Ga Sb barrier is calculated to be 0.53 e V(2.35μm),which makes the absorption range of In As Sb cover an entire range from short-wavelength infrared to long-wavelength infrared spectrum.The fabricated photodetector exhibits a narrow response range from 2.0μm to 2.3μm with a peak around 2.1μm at 300 K.The peak responsivity is 0.4 A/W under-500-m Vapplied bias voltage,corresponding to a peak quantum efficiency of 23.8%in the case without any anti-reflection coating.At 300 K,the photodetector exhibits a dark current density of 6.05×10^-3A/cm^2 under-400-m V applied bias voltage and 3.25×10^-5A/cm^2 under zero,separately.The peak detectivity is 6.91×10^10cm·Hz^1/2/W under zero bias voltage at 300 K.
基金the National Key Research and Development Program of China(Grant No.2020YFA0211300)the National Natural Science Foundation of China(Grant Nos.92050112,12074237,and 12004233)the Fundamental Research Funds for Central Universities,China(Grant Nos.GK202103010and GK202103018)。
文摘Localized surface plasmon has been extensively studied and used for the photocatalysis of various chemical reactions.However,the different contributions between plasmon resonance and interband transition in photocatalysis has not been well understood.Here,we study the photothermal and hot electrons effects for crystal transformation by combining controlled experiments with numerical simulations.By photo-excitation of Na YF4:Eu^(3+)@Au composite structure,it is found that the plasmonic catalysis is much superior to that of interband transition in the experiments,owing to the hot electrons generated by plasmon decay more energetic to facilitate the reaction.We emphasize that the energy level of hot electrons plays an essential role for improving the photocatalytic activity.The results provide guidelines for improving the efficiency of plasmonic catalysis in future experimental design.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301202the National Natural Science Foundation of China under Grant Nos 11474275,61674135 and 91536101+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDPB0603the China Postdoctoral Science Foundation under Grant No 2017M622400
文摘The influence of the pressure transmission medium(PTM)on the excitonic interband transitions in monolayer tungsten diselenide(WSe2)is investigated using photoluminescence(PL)spectra under hydrostatic pressure up to 5GPa.Three kinds of PTMs,condensed argon(Ar),1:1 n-pentane and isopentane mixture(PM),and4:1 methanol and ethanol mixture(MEM,a PTM with polarity),are used.It is found that when either Ar or PM is used as the PTM,the PL peak of exciton related to the direct K-K interband transition shows a pressure-induced blue-shift at a rate of 32±4 or 32±1 meV/GPa,while it turns to be 50±9meV/GPa when MEM is used as the PTM.The indirect A-K interband transition presents almost no shift with increasing pressure up to approximatel.y 5 GPa when Ar and PM are used as the PTM,while it shows a red-shift at the rate of-17±7meV/GPa by using MEM as the PTM.These results reveal that the optical interband transitions of monolayer WSe2 are very sensitive to the polarity of the PTM.The anomalous pressure coefficient obtained using the polar PTM of MEM is ascribed to the existence of hydrogen-like bonds between hydroxyl in MEM and Se atoms under hydrostatic pressure.
基金financially supported by the National Natural Science Foundation of China(Nos.22074038 and 21807032)the Natural Science Foundation of Hunan Province(No.2019J30007),and the Fundamental Research Funds for the Central Universities.
文摘Compared with the widespread exploitation of hot electrons in plasmonic nanoparticles(NPs),hot holes generated from plasmonic metal interband transitions,are often overlooked in photoelectrochemistry,including photoelectrochemical sensing.Motivated by the subtle spectral overlap between the characteristic plasmonic bands of Ag NPs and interband transitions of Au,herein,we construct unusual core-shell Ag@Au NPs via an anti-galvanic reaction to promote the generation of hot holes.Benefiting from the unique plasmon resonances of Ag cores in specific wavelength regimes,Ag@Au can excite multiplied hot holes while Au cannot under the same conditions.With satisfactory accuracy and good practicability,the photoelectrochemical sensing platform based on Ag@Au NPs possesses a detection limit of 77 nmol/L for glucose,exhibiting significantly higher sensitivity compared to that using Au NPs.This work exemplifies the applications of interband hot-hole accumulation initiated by plasmons and may inspire more strategies to explore the utilization of hot holes in photoelectrochemistry.
基金supported by the National Natural Science Foundation of China (Grant No 20573028)
文摘The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al-Al2O3 core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al-Al2O3/nitrocellulose(NC) film are investigated by numerical calculations. Both the size-dependent interband transitions and frequency-dependent free electron damping of the nanometallic aluminium are taken into account in the calculations. Oxidation effect of nanoaluminium is also analysed. It is shown that oxidation may enhance but may also reduce the optical absorption, depending on the excited light energy and initial dimension of nanoparticle. Metal core size and excited light energy dominate the absorption characteristic. The absorption ability of ellipsoidal nanoparticles is larger than that of spheroidal nanoparticles and increases by the square index as the aspect ratio increases. These calculations will provide some significant theoretical guidance for the preparation and laser ignition of nanoenergetic materials.