期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Green and sustainably designed intercalation-type anodes for emerging lithium dual-ion batteries with high energy density
1
作者 Tejaswi Tanaji Salunkhe Abhijit Nanaso Kadam +1 位作者 Jaehyun Hur Il Tae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期466-478,I0011,共14页
Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing amm... Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing ammonium bicarbonate(ABC)as a template,which resulted in mesoporous Fe3O4embedded in expanded carbon(Fe3O4@G(ABC))via simple ball milling followed by annealing.This self-assembly approach for graphite-encapsulated Fe3O4composites helps enhance the electrochemical performance,such as the cycling stability and superior rate stability(at 3 A/g),with improved conductivity in Li DIBs.Specifically,Fe3O4@G-1:4(ABC)and Fe3O4@G-1:6(ABC)anodes in a half-cell at 0.1 A/g delivered initial capacities of 1390.6 and 824.4 mA h g^(-1),respectively.The optimized anode(Fe3O4@G-1:4(ABC))coupled with the expanded graphite(EG)cathode in Li DIBs provided a substantial initial specific capacity of 260.9 mA h g^(-1)at 1 A/g and a specific capacity regain of 106.3 mA h g^(-1)(at 0.1 A/g)after 250 cycles,with a very high energy density of 387.9 Wh kg^(-1).The strategically designed Fe3O4@G accelerated Li-ion kinetics,alleviated the volume change,and provided an efficient conductive network with excellent mechanical flexibility,resulting in exceptional performance in Li DIBs.Various postmortem analyses of the anode and cathode(XRD,Raman,EDS,and XPS)are presented to explain the intercalation-type electrochemical mechanisms of Li DIBs.This study offers several advantages,including safety,low cost,sustainability,environmental friendliness,and high energy density. 展开更多
关键词 Lithium dual-ion batteries Rust encapsulated graphite Ammonium bicarbonate intercalation-type anode Energy density
下载PDF
In situ XRD and electrochemical investigation on a new intercalation-type anode for high-rate lithium ion capacitor 被引量:1
2
作者 Bobo Zou Ting Wang +9 位作者 Shengyuan Li Rong Kang Guochun Li Sherif AEl-Khodary Dickon HLNg Xianhu Liu Jingxia Qiu Yan Zhao Jiabiao Lian Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期109-117,I0004,共10页
A new intercalation-type anode material is reported herein to improve the lithium storage kinetics for high-rate lithium ion capacitors.The crystal structure of orthorhombic NaNbO3 indicates two possible tunnels for l... A new intercalation-type anode material is reported herein to improve the lithium storage kinetics for high-rate lithium ion capacitors.The crystal structure of orthorhombic NaNbO3 indicates two possible tunnels for lithium ions insertion into NaNbO3 host along the<101>and<141>directions.Moreover,in situ XRD is conducted to investigate the lithium storage mechanism and structural evolution of the NaNb O_(3) anode,demonstrating its intercalation behavior through(101)and(141)planes.Furthermore,the rGO nanosheets are introduced to facilitate the charge transfer,which also effectively prevent the aggregation of NaNbO3 nanocubes.As expected,the NaNbO_(3)/rGO nanocomposites possess remarkable reversible capacity(465 mA h g^(-1) at 0.1 A g^(-1)),superior rate capability(325 mA h g^(-1) at 1.0 A g^(-1))and cycling stability,attributed to their synergistic effect and high Li+diffusion coefficient DLi[D(NaNbO_(3)/rGO)/D(NaNbO_(3))≈31.54].Remarkably,the NaNbO3/rGO-based LIC delivers a high energy density of 166.7 W h kg^(-1) at 112.4 W kg^(-1) and remains 24.1 W h kg^(-1) at an ultrahigh power density of26621.2 W kg^(-1),with an outstanding cycling durability(90%retention over 3000 cycles at 1.0 A g^(-1)).This study provides new insights on novel intercalation-type anode material to enrich the materials system of LICs. 展开更多
关键词 Lithium ion capacitor intercalation-type anode NaNbO3 nanocubes In situ XRD High energy/power densities
下载PDF
Self-consistent assessment of Li^(+) ion cathodes:Theory vs.experiments 被引量:2
3
作者 Hongjie Xu Weidong Xiao +2 位作者 Zhuo Wang Junhua Hu Guosheng Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期229-241,I0006,共14页
Transition metal oxide cathodes such as layered Li Co O_(2),spinel Li Mn_(2)O_(4) and olivine Li Fe PO4 have been commercialized for several decades and widely used in the rechargeable Li-ion batteries(LIBs).While gre... Transition metal oxide cathodes such as layered Li Co O_(2),spinel Li Mn_(2)O_(4) and olivine Li Fe PO4 have been commercialized for several decades and widely used in the rechargeable Li-ion batteries(LIBs).While great theoretical efforts have been made using the density functional theory(DFT)method,leading to insightful understanding covering materials stability and functional properties,the lack of consistency in choices of functionals and/or convergence criteria makes it somewhat difficult to compare results.It is therefore highly useful to assess these established systems towards self-consistency,thus offering a reliable working basis for theoretical formulation of novel cathodes.Here in this work,we have carried out systematic DFT calculations on the basis of recently established framework covering both thermodynamic stability,functional properties and associated mechanisms.Efforts have been made in selfconsistent selection of exchange-correlation(XC)functionals in terms of dependable accuracy with affordable computational cost,which is essential for high-throughput first-principles calculations.The outcome of the current work on three established cathode systems is in very good agreement with experimental data,and the methodology is to provide a solid basis for designing novel cathode materials without using costing non-local exchange-correlation functionals for structure-energy calculations. 展开更多
关键词 Li-ion batteries intercalation-type oxide cathodes Ab initio approaches SELF-CONSISTENCY Density functional theory
下载PDF
Organic interlayer engineering of TiS_(2) for enhanced aqueous Zn ions storage
4
作者 Chengcheng Huang Yiwen Liu +7 位作者 Jing Li Zhonghao Miao Xinhao Cai Zhouxiang Wu Haoxiang Yu Lei Yan Liyuan Zhang Jie Shu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期135-141,共7页
Aqueous rechargeable zinc-ion batteries(ARZIBs)have a bright future for energy storage due to their high energy density and safety.However,for traditional ARZIBs,cathode materials always suffer from the limited space ... Aqueous rechargeable zinc-ion batteries(ARZIBs)have a bright future for energy storage due to their high energy density and safety.However,for traditional ARZIBs,cathode materials always suffer from the limited space for large-sized zinc ions storage and transport,leading to low Coulombic efficiency and inferior cycling performance.To build a reliable host with large tunnel,1-butyl-1-methylpyrrolidinium ion(PY14^(+))pre-intercalated TiS_(2)(PY14^(+)-TiS_(2))is designed as an alternative intercalation-type electrode.As the insertion organic guest widens the interlayer space of TiS_(2)and buffers the lattice stress generated during the electrochemical cycles,the structural reversibility,cycling stability and kinetics properties of PY14^(+)-TiS_(2) are enhanced greatly.A specific capacity of 130.9 mAh g^(−1) with 84.3%capacity retention over 500 cycles can be achieved at 0.1 A g^(−1).Therefore,this study paves the way for enhancing the aqueous Zn ions storage capability by organic interlayer engineering. 展开更多
关键词 Pre-intercalation Organic interlayer engineering TiS_(2) intercalation-type electrode Aqueous zinc-ion batteries
原文传递
Stabilizing layered superlattice MoSe_(2)anodes by the rational solvation structure design for low-temperature aqueous zinc-ion batteries
5
作者 Zeheng Lv Yuanhong Kang +11 位作者 Rong Tang Jin Yang Guanhong Chen Yuhan Hu Pengxiang Lin Huiya Yang Qilong Wu Minghao Zhang Fenghua Chen Yueying Peng Yang Yang Jinbao Zhao 《Electron》 2023年第1期70-79,共10页
Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to their intrinsic merits of low cost and high safety.However,the poor thermodynamic stability of Zn metal in aqueous electrolytes inevitably ca... Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to their intrinsic merits of low cost and high safety.However,the poor thermodynamic stability of Zn metal in aqueous electrolytes inevitably cause Zn dendrites growth and interface parasitic side reactions,resulting in unsatisfactory cycling stability and low Zn utilization.Replacing Zn anode with intercalation-type anodes have emerged as a promising alternative strategy to overcome the above issues but the lack of appropriate anode materials is becoming the bottleneck.Herein,the interlayer structure of MoSe_(2)anode is preintercalated with long-chain polyvinyl pyrrolidone(PVP),constructing a periodically stacked p-MoSe_(2)superlattice to activate the reversible Zn^(2+)storage performance(203 mAh g^(−1)at 0.2 A g^(−1)).To further improve the stability of the superlattice structure during cycling,the electrolyte is also rationally designed by adding 1,4-Butyrolactone(γ-GBL)additive into 3 M Zn(CF_(3)SO_(3))_(2),in whichγ-GBL replaces the H2O in Zn^(2+)solvation sheath.The preferential solvation ofγ-GBL with Zn^(2+)effectively reduces the water activity and helps to achieve an ultra-long lifespan of 12,000 cycles for p-MoSe_(2).More importantly,the reconstructed solvation structure enables the operation of p-MoSe_(2)||ZnxNVPF(Na3V2(PO4)2O_(2)F)AZIBs at an ultra-low temperature of−40°C,which is expected to promote the practical applications of AZIBs. 展开更多
关键词 intercalation-type anodes p-MoSe_(2)||ZnxNVPF periodically stacked p-MoSe_(2)superlattice solvation sheath ultra-long lifespan
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部