Ideal proportional navigation (IPN) is a natural choice for exoatmospheric interception for its mighty capture capability and ease of implementation. The closed-form solution of two- dimensional ideal proportional n...Ideal proportional navigation (IPN) is a natural choice for exoatmospheric interception for its mighty capture capability and ease of implementation. The closed-form solution of two- dimensional ideal proportional navigation was conducted in previous public literature, whereas the practical interception happens in the three-dimensional space. A novel set of relative dynamic equations is adopted in this paper, which is with the advantage of decoupling relative motion in the instantaneous rotation plane of the line of sight from the rotation of this plane. The dimension-reduced IPN is constructed in this instantaneous plane, which functions as a three-dimensional guidance law. The trajectory features of dimension-reduced IPN are explored, and the capture regions of dimension-reduced IPN with limited acceleration against nonmaneuvering and maneuvering targets are analyzed by using phase plane method. It is proved that the capture capability of IPN is much stronger than true proportional navigation (TPN), no matter the target maneuvers or not. Finally, simulation results indicate that IPN is more effective than TPN in exoatmospheric interception scenarios.展开更多
A quantised backstepping robust guidance law of three-dimension(3-D)space for compound control of reaction control jets and aerodynamic surfaces is proposed to attenuate the unknown target manoeuvre in this paper.The ...A quantised backstepping robust guidance law of three-dimension(3-D)space for compound control of reaction control jets and aerodynamic surfaces is proposed to attenuate the unknown target manoeuvre in this paper.The presented guidance law guarantees that the rates of line of sight converge to a residual circle centred at the origin whose radius is depended on the target manoeuvres,quantised length and guidance law gains.The simulations are given to illustrate the effectiveness of the proposed guidance law.展开更多
In order to intercept the future targets that are characterized by high maneuverability, multiple interceptors may be launched and aimed at single target. The scenario of two missiles P and Q intercepting a single tar...In order to intercept the future targets that are characterized by high maneuverability, multiple interceptors may be launched and aimed at single target. The scenario of two missiles P and Q intercepting a single target is modeled as a two-pursuit single-evader non-zero-sum linear quadratic differential game. The intercept space is decomposed into three subspaces which are mutually disjoint and their union covers the entire intercept space. The effect of adding the second interceptor arises in the intercept space of both P and Q (PQ-intercept space). A guidance law is derived from the Nash equilibrium strategy set (NESS) of the game. Simulation studies are focused on the PQ-intercept space. It is indicated that 1) increasing the target's maneuverability will enlarge PQ-intercept space; 2) the handover conditions will be released if the initial zero-effort-miss (ZEM) of both interceptors has opposite sign; 3) overvaluation of the target's maneuverability by choosing a small weight coefficient will generate robust performance with respect to the target maneuvering command switch time and decrease the fuel requirement; and 4) cooperation between interceptors increases the interception probability.展开更多
基金co-supported by the National Science Foundation of China(No.11222215)the National Basic Research Program of China(No.2013CB733100)
文摘Ideal proportional navigation (IPN) is a natural choice for exoatmospheric interception for its mighty capture capability and ease of implementation. The closed-form solution of two- dimensional ideal proportional navigation was conducted in previous public literature, whereas the practical interception happens in the three-dimensional space. A novel set of relative dynamic equations is adopted in this paper, which is with the advantage of decoupling relative motion in the instantaneous rotation plane of the line of sight from the rotation of this plane. The dimension-reduced IPN is constructed in this instantaneous plane, which functions as a three-dimensional guidance law. The trajectory features of dimension-reduced IPN are explored, and the capture regions of dimension-reduced IPN with limited acceleration against nonmaneuvering and maneuvering targets are analyzed by using phase plane method. It is proved that the capture capability of IPN is much stronger than true proportional navigation (TPN), no matter the target maneuvers or not. Finally, simulation results indicate that IPN is more effective than TPN in exoatmospheric interception scenarios.
基金National Science Foundation of China[grant number 61673050]Aeronautical Science Foundation of China[grant number 201401M5001]Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China[grant number ICT1600229].
文摘A quantised backstepping robust guidance law of three-dimension(3-D)space for compound control of reaction control jets and aerodynamic surfaces is proposed to attenuate the unknown target manoeuvre in this paper.The presented guidance law guarantees that the rates of line of sight converge to a residual circle centred at the origin whose radius is depended on the target manoeuvres,quantised length and guidance law gains.The simulations are given to illustrate the effectiveness of the proposed guidance law.
文摘In order to intercept the future targets that are characterized by high maneuverability, multiple interceptors may be launched and aimed at single target. The scenario of two missiles P and Q intercepting a single target is modeled as a two-pursuit single-evader non-zero-sum linear quadratic differential game. The intercept space is decomposed into three subspaces which are mutually disjoint and their union covers the entire intercept space. The effect of adding the second interceptor arises in the intercept space of both P and Q (PQ-intercept space). A guidance law is derived from the Nash equilibrium strategy set (NESS) of the game. Simulation studies are focused on the PQ-intercept space. It is indicated that 1) increasing the target's maneuverability will enlarge PQ-intercept space; 2) the handover conditions will be released if the initial zero-effort-miss (ZEM) of both interceptors has opposite sign; 3) overvaluation of the target's maneuverability by choosing a small weight coefficient will generate robust performance with respect to the target maneuvering command switch time and decrease the fuel requirement; and 4) cooperation between interceptors increases the interception probability.