Pure metal Fe films with thickness of about 100nm were deposited on Si (100) substrates by DC magnetron sputtering. Annealing was subsequently performed in a vacuum furnace in the temperature range of 600-1000℃ for...Pure metal Fe films with thickness of about 100nm were deposited on Si (100) substrates by DC magnetron sputtering. Annealing was subsequently performed in a vacuum furnace in the temperature range of 600-1000℃ for 2h. The samples were characterized by means of Rutherford backscattering (RBS) with 3MeV carbon ions. The RBS data were fitted with SIMNRA 6.0, and the results show the atomic interdiffusion in Fe/Si systems. The microstructures and crystal structures were characterized by scanning electron microscope and X-ray diffrac- tion. The effects of annealing on atomic interdiffusion, silicide formation, and microstructures in Fe/Si systems were analyzed.展开更多
The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion c...The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.展开更多
High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and...High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and thus the fracture mechanism of the coating under external loading.In this study,the interdiffusion behavior in a magnetron sputtered Cr coating deposited on a Zr-4 alloy was studied in a vacuum environment at 1160C.In addition,the effect of interdiffusion on the microcracking behavior of the Cr coating was determined by in situ three-point bending tests.The experimental results show that the interdiffusion behavior resulted in the formation of a ZrCr2 layer,accompanied by the consumption of Cr coating and interfacial roughening.The growth of the diffusion layer followed a nearly parabolic law with respect to annealing time,and the residual stress of the annealed coating decreased with increasing annealing time.Under external loading,a large number of cracks were generated in the brittle interlayer,and some interfacial cracks were formed and grew at the ZrCr2/Zr-4 interface.Despite the remarkable microcracks in the ZrCr2 layer,the vacuum-annealed Cr coating has significantly fewer cracks than the original coating,mainly because of the recrystallization of the coating during annealing.展开更多
To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb–Si-based alloy substrate,the coating was oxidized at 1250°C for 5,10,20,50,or 100 h.The interfacial diffusion between the(Nb,X...To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb–Si-based alloy substrate,the coating was oxidized at 1250°C for 5,10,20,50,or 100 h.The interfacial diffusion between the(Nb,X)(Si,Ge)_2(X = Ti,Cr,Hf) coating and the Nb–Si based alloy was also examined.The transitional layer is composed of(Ti,Nb)_5(Si,Ge)_4 and a small amount of(Nb,X)_5(Si,Ge)_3.With increasing oxidation time,the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate,which obeys a parabolic rate law.The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm×h^(-1/2).Moreover,the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.展开更多
Interdiffusion in the Fe203-TiO2 system was investigated by the diffusion couple method in the temperature range of 1323 to 1473 K. The diffusion concentration curves of Ti4+ cations were obtained by electron probe m...Interdiffusion in the Fe203-TiO2 system was investigated by the diffusion couple method in the temperature range of 1323 to 1473 K. The diffusion concentration curves of Ti4+ cations were obtained by electron probe microanalysis, according to which the Boltzmann-Matano method optimized by Broeder was used to calculate the interdiffusion coeffi- cients. The interdiffusion coefficients almost increased linearly with the mole fraction of Ti4+ cations increasing, and they were in the range of 10-12-10-11cm2-s-1. The increase of temperature could also lead to the increase of the interdiffusion coefficients at a constant concentration of Ti4+ cations. It was also found that the thickness growth of the diffusion layer obeyed the parabolic rate law.展开更多
Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results...Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results of the calculation show that interdiffusion coefficients in β-NiAI phase strongly depend on the compositions and vary over several orders of magnitude. Compared with the interdiffusion coefficients in the stoichiometric β-NiAI phase, the interdiffusion coefficients in β-NiAI phase formed on superalloy is obviously small, probably due to the composition, complicated microstructure and precipitates. However, it could be seen clearly that the shapes of the diffusivity curves are very similar to each other. The similarity of the diffusion curves and the difference between interdiffusion coefficients imply that the compositions, microstructures and precipitates of superalloy have a distinctly adverse effect on the interdiffusion of Ni and Al atoms during aluminization, but do not change the essential characteristics of β-NiAI phase.展开更多
A repeated interdiffusion method is described for phase-stable and high-quality (FA,MA)PbI3 film. The crys- tallization and growth of the perovskite films can be well controlled by adjusting the reactant concentrati...A repeated interdiffusion method is described for phase-stable and high-quality (FA,MA)PbI3 film. The crys- tallization and growth of the perovskite films can be well controlled by adjusting the reactant concentrations. With this method, dense, smooth perovskite films with large crystals have been obtained. Finally, a PCE of 16.5% as well as a steady-state efficiency of 16.3% is achieved in the planar perovskite solar cell.展开更多
The effect of interaction among γ′ ordered domains on the interdiffusion process in γ+γ′ and γ+γ′/γ+γ′ diffusion couples is investigated by using the phase-field method, in which bulk free energy and mob...The effect of interaction among γ′ ordered domains on the interdiffusion process in γ+γ′ and γ+γ′/γ+γ′ diffusion couples is investigated by using the phase-field method, in which bulk free energy and mobility are linked with thermodynamic and kinetic databases. Simulated results show that the interaction among γ′ ordered domains has great influence on the microstructure, the interdiffnsion velocity and the volume fraction ofγ′ phase on both sides of the diffusion couples.展开更多
In accordance with the definition of diffusivity, the origin of coordinate system of the original diffusion equation is set at a point in the solvent material. Kirkendall revealed that Cu atoms, Zn atoms and vacancies...In accordance with the definition of diffusivity, the origin of coordinate system of the original diffusion equation is set at a point in the solvent material. Kirkendall revealed that Cu atoms, Zn atoms and vacancies move simultaneously in the interdiffusion region. This indicates that the original diffusion equation is a moving coordinate system for the experimentation system outside the diffusion region. The diffusion region space which means vacancies and interstices among atoms plays an important role in the diffusion phenomena. The theoretical equation of the Kirkendall effect is reasonably obtained as a shift between coordinate systems of the diffusion equation. The situation is similar to the well-known Doppler effect in the wave equation. Boltzmann transformed the original diffusion equation of a binary system into the nonlinear ordinary differential equation in accordance with the parabolic law. In the previous works, the solutions of the diffusion equation transformed by Boltzmann were analytically obtained and we found that the well-known Darken equation is mathematically wrong. In the present study, we found that the so-called intrinsic diffusivity corresponds in appearance to the physical solution obtained previously. However, the intrinsic diffusivity itself conceived in the diffusion research history is essentially nonexistent.展开更多
The nonlinear diffusion equation for a binary system interdiffusion was analytically solved in the previous work. The theoretical relation of Kirkendall effect was also derived in the previous work. These new results ...The nonlinear diffusion equation for a binary system interdiffusion was analytically solved in the previous work. The theoretical relation of Kirkendall effect was also derived in the previous work. These new results have not yet been concretely applied to actual diffusion problems. In the present work, it is revealed that the previous results reproduce the experimental concentration profile by taking account of the movement of diffusion region space. It is thus actually confirmed that any problems of binary system interdiffusion can be solved by the new analytical method if even diffusivities of self-diffusion and impurity diffusion in the materials concerned are given. The method for solving interdiffusion problems of many elements system, which is extremely important for the development of new useful materials, is also reasonably discussed. Further, it is revealed that the concept of intrinsic diffusion is unsuitable for the diffusion theory. The fundamental theory of diffusion discussed here will be useful for analyzing actual diffusion problems in future.展开更多
This study is aimed at determining the diffusion coeffcient of net-work modifiers(mainly Na, K, and Ca) in a two-phase melt-NaCl system, in which the melts are granitic andthe system is NaCl-rich in composition. The...This study is aimed at determining the diffusion coeffcient of net-work modifiers(mainly Na, K, and Ca) in a two-phase melt-NaCl system, in which the melts are granitic andthe system is NaCl-rich in composition. The diffusion coefficients of Na, K, and Ca were measured at the temperatures of 750 -1400℃, pressures of 0. 001×108 - 2×108 Pa, and initialH2O contents of O wt% - 6. 9 wt% in the granitic melts. The diffusion coefficients of Fe andMg were difficuIt to resolve. In all experiments a NaCl melt was present as well. In the absence of H2O, the diffusion of net-work modifiers folows an Arrhanious equation at 1 ×105 Pa:lgDCa= - 3. 88 - 5140/ T, lgDK = - 3. 79 - 4040/ T, and lgDNa=- 4.99 - 3350/ T,where D is in cm2/s and T is in K. The diffusion coefficients of Ca, Na, K, and Fe increasenon-linearly with increasing H2O cOntent in the melt. The presence of about 2 wt% H2O inthe melt will lead to a dramatical increase in diffusivity, but higher H2O content has only a minor effect. This change is probably the result of a change in the melt structure when H2O ispresent. The diffusion coefficients measured in this study are significantly different from thosein previous woks. This may be understood in terms of the "transient two-liquid equilibrium"theory. Element interdiffusion dapends not only on its concentration, but also on its activity coefficient gradient, which is reflected by the distribution coefficient, of the two contactingmelts.展开更多
After diffusion couples were annealed at 260-360 ℃, the concentration profiles of Zn element were measured by EPMA. It has been first quantitatively determined by Matano method that the interdiffusion coefficient in ...After diffusion couples were annealed at 260-360 ℃, the concentration profiles of Zn element were measured by EPMA. It has been first quantitatively determined by Matano method that the interdiffusion coefficient in A1-Zn fee solid solution containing high Zn contents is remarkably decreased due to the small addition of Cu. Also, the interdiffusion coefficient in A1-Zn fee solid solution clearly increases with the increasing of Zn concentration. The interdiffusion activity energy remarkably decreases with the increasing of Zn contents. On the other hand, the interdiffusion activity energy markedly increases due to the small addition of Cu in the A1 Zn fcc solid solution containing high Zn contents.展开更多
文摘Pure metal Fe films with thickness of about 100nm were deposited on Si (100) substrates by DC magnetron sputtering. Annealing was subsequently performed in a vacuum furnace in the temperature range of 600-1000℃ for 2h. The samples were characterized by means of Rutherford backscattering (RBS) with 3MeV carbon ions. The RBS data were fitted with SIMNRA 6.0, and the results show the atomic interdiffusion in Fe/Si systems. The microstructures and crystal structures were characterized by scanning electron microscope and X-ray diffrac- tion. The effects of annealing on atomic interdiffusion, silicide formation, and microstructures in Fe/Si systems were analyzed.
基金Project(2011CB012803) supported by the National Basic Research Program of ChinaProject(NCET-10-0278) supported by Program for New Century Excellent Talents in University,China
文摘The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.
基金the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302011)National Natural Science Foundation of China(Nos.52005523,U2032143,11902370)+3 种基金International Sci&Tech Cooperation Program of GuangDong Province(No.2019A050510022)Key Research Project of GuangDong Province(Nos.2019B010943001 and 2017B020235001)China Postdoctoral Science Foundation(Nos.2019M653173 and 2019TQ0374)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.2021qntd12).
文摘High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and thus the fracture mechanism of the coating under external loading.In this study,the interdiffusion behavior in a magnetron sputtered Cr coating deposited on a Zr-4 alloy was studied in a vacuum environment at 1160C.In addition,the effect of interdiffusion on the microcracking behavior of the Cr coating was determined by in situ three-point bending tests.The experimental results show that the interdiffusion behavior resulted in the formation of a ZrCr2 layer,accompanied by the consumption of Cr coating and interfacial roughening.The growth of the diffusion layer followed a nearly parabolic law with respect to annealing time,and the residual stress of the annealed coating decreased with increasing annealing time.Under external loading,a large number of cracks were generated in the brittle interlayer,and some interfacial cracks were formed and grew at the ZrCr2/Zr-4 interface.Despite the remarkable microcracks in the ZrCr2 layer,the vacuum-annealed Cr coating has significantly fewer cracks than the original coating,mainly because of the recrystallization of the coating during annealing.
基金financially supported by the National Natural Science Foundation of China(No.51431003)the Joint Funds of the National Natural Science Foundation of China(No.U1435201)
文摘To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb–Si-based alloy substrate,the coating was oxidized at 1250°C for 5,10,20,50,or 100 h.The interfacial diffusion between the(Nb,X)(Si,Ge)_2(X = Ti,Cr,Hf) coating and the Nb–Si based alloy was also examined.The transitional layer is composed of(Ti,Nb)_5(Si,Ge)_4 and a small amount of(Nb,X)_5(Si,Ge)_3.With increasing oxidation time,the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate,which obeys a parabolic rate law.The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm×h^(-1/2).Moreover,the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.
基金financially supported by the National Natural Science Foundation of China (No. 51090384)
文摘Interdiffusion in the Fe203-TiO2 system was investigated by the diffusion couple method in the temperature range of 1323 to 1473 K. The diffusion concentration curves of Ti4+ cations were obtained by electron probe microanalysis, according to which the Boltzmann-Matano method optimized by Broeder was used to calculate the interdiffusion coeffi- cients. The interdiffusion coefficients almost increased linearly with the mole fraction of Ti4+ cations increasing, and they were in the range of 10-12-10-11cm2-s-1. The increase of temperature could also lead to the increase of the interdiffusion coefficients at a constant concentration of Ti4+ cations. It was also found that the thickness growth of the diffusion layer obeyed the parabolic rate law.
文摘Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results of the calculation show that interdiffusion coefficients in β-NiAI phase strongly depend on the compositions and vary over several orders of magnitude. Compared with the interdiffusion coefficients in the stoichiometric β-NiAI phase, the interdiffusion coefficients in β-NiAI phase formed on superalloy is obviously small, probably due to the composition, complicated microstructure and precipitates. However, it could be seen clearly that the shapes of the diffusivity curves are very similar to each other. The similarity of the diffusion curves and the difference between interdiffusion coefficients imply that the compositions, microstructures and precipitates of superalloy have a distinctly adverse effect on the interdiffusion of Ni and Al atoms during aluminization, but do not change the essential characteristics of β-NiAI phase.
基金supported by the National Key Basic Research Program (No.2012CB932903)Natural Science Foundation of China (Nos. 51402348,51421002,91433205,21173260,11474333 and 91233202)
文摘A repeated interdiffusion method is described for phase-stable and high-quality (FA,MA)PbI3 film. The crys- tallization and growth of the perovskite films can be well controlled by adjusting the reactant concentrations. With this method, dense, smooth perovskite films with large crystals have been obtained. Finally, a PCE of 16.5% as well as a steady-state efficiency of 16.3% is achieved in the planar perovskite solar cell.
基金Project supported by the National Natural Science Foundation of China (Grant No 50401013)the National Defense Preresearch Foundation of China (Grant No 9140A12020108HK0333)
文摘The effect of interaction among γ′ ordered domains on the interdiffusion process in γ+γ′ and γ+γ′/γ+γ′ diffusion couples is investigated by using the phase-field method, in which bulk free energy and mobility are linked with thermodynamic and kinetic databases. Simulated results show that the interaction among γ′ ordered domains has great influence on the microstructure, the interdiffnsion velocity and the volume fraction ofγ′ phase on both sides of the diffusion couples.
文摘In accordance with the definition of diffusivity, the origin of coordinate system of the original diffusion equation is set at a point in the solvent material. Kirkendall revealed that Cu atoms, Zn atoms and vacancies move simultaneously in the interdiffusion region. This indicates that the original diffusion equation is a moving coordinate system for the experimentation system outside the diffusion region. The diffusion region space which means vacancies and interstices among atoms plays an important role in the diffusion phenomena. The theoretical equation of the Kirkendall effect is reasonably obtained as a shift between coordinate systems of the diffusion equation. The situation is similar to the well-known Doppler effect in the wave equation. Boltzmann transformed the original diffusion equation of a binary system into the nonlinear ordinary differential equation in accordance with the parabolic law. In the previous works, the solutions of the diffusion equation transformed by Boltzmann were analytically obtained and we found that the well-known Darken equation is mathematically wrong. In the present study, we found that the so-called intrinsic diffusivity corresponds in appearance to the physical solution obtained previously. However, the intrinsic diffusivity itself conceived in the diffusion research history is essentially nonexistent.
文摘The nonlinear diffusion equation for a binary system interdiffusion was analytically solved in the previous work. The theoretical relation of Kirkendall effect was also derived in the previous work. These new results have not yet been concretely applied to actual diffusion problems. In the present work, it is revealed that the previous results reproduce the experimental concentration profile by taking account of the movement of diffusion region space. It is thus actually confirmed that any problems of binary system interdiffusion can be solved by the new analytical method if even diffusivities of self-diffusion and impurity diffusion in the materials concerned are given. The method for solving interdiffusion problems of many elements system, which is extremely important for the development of new useful materials, is also reasonably discussed. Further, it is revealed that the concept of intrinsic diffusion is unsuitable for the diffusion theory. The fundamental theory of diffusion discussed here will be useful for analyzing actual diffusion problems in future.
文摘This study is aimed at determining the diffusion coeffcient of net-work modifiers(mainly Na, K, and Ca) in a two-phase melt-NaCl system, in which the melts are granitic andthe system is NaCl-rich in composition. The diffusion coefficients of Na, K, and Ca were measured at the temperatures of 750 -1400℃, pressures of 0. 001×108 - 2×108 Pa, and initialH2O contents of O wt% - 6. 9 wt% in the granitic melts. The diffusion coefficients of Fe andMg were difficuIt to resolve. In all experiments a NaCl melt was present as well. In the absence of H2O, the diffusion of net-work modifiers folows an Arrhanious equation at 1 ×105 Pa:lgDCa= - 3. 88 - 5140/ T, lgDK = - 3. 79 - 4040/ T, and lgDNa=- 4.99 - 3350/ T,where D is in cm2/s and T is in K. The diffusion coefficients of Ca, Na, K, and Fe increasenon-linearly with increasing H2O cOntent in the melt. The presence of about 2 wt% H2O inthe melt will lead to a dramatical increase in diffusivity, but higher H2O content has only a minor effect. This change is probably the result of a change in the melt structure when H2O ispresent. The diffusion coefficients measured in this study are significantly different from thosein previous woks. This may be understood in terms of the "transient two-liquid equilibrium"theory. Element interdiffusion dapends not only on its concentration, but also on its activity coefficient gradient, which is reflected by the distribution coefficient, of the two contactingmelts.
文摘After diffusion couples were annealed at 260-360 ℃, the concentration profiles of Zn element were measured by EPMA. It has been first quantitatively determined by Matano method that the interdiffusion coefficient in A1-Zn fee solid solution containing high Zn contents is remarkably decreased due to the small addition of Cu. Also, the interdiffusion coefficient in A1-Zn fee solid solution clearly increases with the increasing of Zn concentration. The interdiffusion activity energy remarkably decreases with the increasing of Zn contents. On the other hand, the interdiffusion activity energy markedly increases due to the small addition of Cu in the A1 Zn fcc solid solution containing high Zn contents.