The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ...The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.展开更多
Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the micros...Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the microscopic morphology of the bonding interface.At the same time,combined with finite element calculations,the evolution mechanism of the interface of the hot melt explosion welded W/CuCrZr composite plate was explored.The results show that the interface bonding of the hot melt explosion welded W/CuCrZr composite plate is good and there is a cross-melting zone with 3–8μm in thickness,but cracks are developed on the W side.The numerical simulation reproduces the changes of pressure,stress,strain and internal energy at the bonding interface in the process of hot melt explosion welding.The location of the crack generated in the experiment coincides with the high stress position calculated by numerical simulation.The high pressure and high temperature near the hot melt explosion welding interface further promote the bonding of the interface.展开更多
A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle ...A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle and copper matrix during forging,and it has an orientation relationship of(111)TiC//(002)Cu&[110]TiC//[110]Cuwith the copper matrix.HRTEM analysis suggests that TiC is semicoherently bond with copper matrix,which helps reduce phonon scattering at the TiC/Cu interface and facilitates the heat transfer,further leading to the hot-forged copper/diamond composite(referred as to Cu-Ti/Dia-0)has a thermal conductivity of 410 W/m K,and this is about 74%of theoretical thermal conductivity of hot-forged copper/composite(552 W/m K).However,the formation of thin amorphous carbon layer in diamond particle(next to the interfacial TiC layer)and deformed structure in the copper matrix have adverse effect on the thermal conductivity of Cu-Ti/Dia-0 composite.800℃-annealing eliminates the discrepancy in TiC interface morphology between the diamond-{100}and-{111}facets of Cu-Ti/Dia-0 composite,but causes TiC particles coarsening and agglomerating for the Cu-Ti/Dia-2 composite and interfacial layer cracking and spallation for the Cu-Ti/Dia-1 composite.In addition,a large amount of graphite was formed by titanium-induced diamond graphitization in the Cu-Ti/Dia-2 composite.All these factors deteriorate the heat transfer behavior for the annealed Cu-Ti/Dia composites.Appropriate heat treatment needs to be continually investigated to improve the thermal conductivity of hot-forged CuTi/Dia composite by eliminating deformed structure in the copper matrix with limit/without impacts on the formed TiC interfacial layer.展开更多
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent...Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.展开更多
Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies...Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies have proposed some optimal rib parameters(e.g.rib spacing);unfortunately,the interface shear behaviors are generally ignored.Therefore,determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible.The load-bearing capacity and deformation capacity vary as bolt profiles differ,suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles.The aim of this study is to investigate the effects of bolt profiles(with/without ribs,rib spacing,and rib height)on the shear behaviors between the rock bolt and grout material using direct shear tests.Thereby,systematic interfacial shear tests with different bolt profiles were performed under both constant normal load(CNL)and constant normal stiffness(CNS)boundary conditions.The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does,in particular at the post-yield stage.The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions,and optimize selection of rock bolts under in situ rock conditions.展开更多
In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kin...In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kinds of aggregates under different filler-asphalt ratios were measured by a dynamic shear rheometer (DSR). Moreover, four rheological parameters of K.Ziegel-B, Luis Ibrarra-A, complex shear modulus ΔG*and complex viscosity Δη* for evaluating the interaction ability were studied. Results indicate that all the four parameters can characterize the interaction ability of asphalt and aggregate correctly and feasibly. Through the comparison of sensitivities and physical meanings of the four parameters, K.Ziegel-B with high sensitivity and exact physical meaning is finally selected as the evaluation index for interaction ability of asphalt and aggregate.展开更多
The reinforced gabion wall on the west line of Xiangtan to Hengyang highway in Hunan province was studied with the large scale pullout model tests and numerical simulations to obtain the interface friction characteris...The reinforced gabion wall on the west line of Xiangtan to Hengyang highway in Hunan province was studied with the large scale pullout model tests and numerical simulations to obtain the interface friction characteristics between the double twisted hexagonal gabion mesh(2.2 mm and 2.7 mm respectively) and red sandstone. The experimental results showed that the pullout displacement-shear stress curve could be roughly divided into 3 sections:the rapid growth,the steady progression and the yielding sections. The thinner gabion mesh led to the higher peak shear stress,larger cohesion and friction angle under the same normal stress. The pullout displacement-shear stress curve from the numerical simulation had two sections,namely,the rapid growth of shear stress and the yielding of gabion mesh. Under the same conditions,the 2.2 mm meshes resulted in the larger drawing coefficient and pseudo-friction coefficient and thus presented the better interface friction properties. The conceptual model suggested that the proportion of pullout force shared by the horizontal bars and longitudinal bars relied on the magnitude,the length,the coefficient of earth pressure and the friction factor,etc. The pullout bearing resistance on the transversal bars(T_1) comprises the largest proportion of the total resistance(about 62%–72%),on the other hand,the proportions of the annular pullout friction on the longitudinal bars(T_2) and the interface friction acting on the surfaces of all nodes(T_3) both grow against T_1 when the normal stress increases.展开更多
The softening-melting characteristics of ferrous burden play a crucial role in the thickness and position of the cohesive zone.The influence of the basicity and experimental atmosphere on the softening-melting behavio...The softening-melting characteristics of ferrous burden play a crucial role in the thickness and position of the cohesive zone.The influence of the basicity and experimental atmosphere on the softening-melting behavior of primary slag under slag-coke interaction was investigated using in situ visualization method.The mechanism was analyzed using the FactSage software,X-ray diffraction,and electron probe microanalysis.The softening and melting temperatures of the samples increased with increasing basicity under different atmospheres.The difference between softening and melting temperatures is smaller in a H_(2) atmosphere than in a CO atmosphere;in H_(2) atmosphere,the range of softening zone in the cohesive zone was significantly thinner.The formed low-melting-point FeO-bearing phases decrease when H_(2) was used as the reducing agent.In addition,according to FactSage calculations,the high content of metallic iron reduced in the H_(2) atmosphere raised the softening temperature of the primary slag.It also narrowed and moved downward the cohesive zone due to an increase in softening and melting temperatures.Meanwhile,the increase in basicity promoted the decrease in liquid ratio and improved the permeability of cohesive zone.展开更多
Experiments were carried out with bypass-current MIG welding–brazing of magnesium alloy to galvanized steel to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. Exper...Experiments were carried out with bypass-current MIG welding–brazing of magnesium alloy to galvanized steel to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. Experimental results indicated that the joint efficiency tended to increase at first and then to reduce with the increase of heat input. The joint efficiency reached its maximum of about 70% when the heat input was 155 J/mm. The metallurgical bonding between magnesium alloy and steel was a thin continuous reaction layer, and the intermetallic compound layer consisted of Mg–Zn and slight Fe–Al phases. It is concluded that bypass-current MIG welding–brazing is a stable welding process, which can be used to achieve defect-free joining of magnesium alloy to steel with good weld appearances.展开更多
基金the support of the China Manned Space Engineering(YYMT1201-EXP08)。
文摘The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.
基金National Natural Science Foundation of China(12072363,12272374,12372373)Special Fund for Fundamental Research of the Central Universities(WK2480000008,WK2480000007,WK2320000049)Anhui Provincial Science and Technology Major Project(202003A05020035)。
文摘Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the microscopic morphology of the bonding interface.At the same time,combined with finite element calculations,the evolution mechanism of the interface of the hot melt explosion welded W/CuCrZr composite plate was explored.The results show that the interface bonding of the hot melt explosion welded W/CuCrZr composite plate is good and there is a cross-melting zone with 3–8μm in thickness,but cracks are developed on the W side.The numerical simulation reproduces the changes of pressure,stress,strain and internal energy at the bonding interface in the process of hot melt explosion welding.The location of the crack generated in the experiment coincides with the high stress position calculated by numerical simulation.The high pressure and high temperature near the hot melt explosion welding interface further promote the bonding of the interface.
基金supported by the Air Force Office of Scientific Research under award number FA2386-17-14025。
文摘A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle and copper matrix during forging,and it has an orientation relationship of(111)TiC//(002)Cu&[110]TiC//[110]Cuwith the copper matrix.HRTEM analysis suggests that TiC is semicoherently bond with copper matrix,which helps reduce phonon scattering at the TiC/Cu interface and facilitates the heat transfer,further leading to the hot-forged copper/diamond composite(referred as to Cu-Ti/Dia-0)has a thermal conductivity of 410 W/m K,and this is about 74%of theoretical thermal conductivity of hot-forged copper/composite(552 W/m K).However,the formation of thin amorphous carbon layer in diamond particle(next to the interfacial TiC layer)and deformed structure in the copper matrix have adverse effect on the thermal conductivity of Cu-Ti/Dia-0 composite.800℃-annealing eliminates the discrepancy in TiC interface morphology between the diamond-{100}and-{111}facets of Cu-Ti/Dia-0 composite,but causes TiC particles coarsening and agglomerating for the Cu-Ti/Dia-2 composite and interfacial layer cracking and spallation for the Cu-Ti/Dia-1 composite.In addition,a large amount of graphite was formed by titanium-induced diamond graphitization in the Cu-Ti/Dia-2 composite.All these factors deteriorate the heat transfer behavior for the annealed Cu-Ti/Dia composites.Appropriate heat treatment needs to be continually investigated to improve the thermal conductivity of hot-forged CuTi/Dia composite by eliminating deformed structure in the copper matrix with limit/without impacts on the formed TiC interfacial layer.
基金Project (2011BAB206006) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (2009ZE56011) supported by the Aviation Science Funds of ChinaProject (GJJ12411) supported by the Education Department of Jiangxi Province,China
文摘Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.
基金This study is supported by the key projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the National Key Research and Development Program of China(Grant Nos.2019YFC0605103,2019YFC0605100)the National Natural Science Foundation of China(Grant No.51279201).The partial support from the Youth Innovation Promotion Association CAS is gratefully acknowledged。
文摘Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies have proposed some optimal rib parameters(e.g.rib spacing);unfortunately,the interface shear behaviors are generally ignored.Therefore,determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible.The load-bearing capacity and deformation capacity vary as bolt profiles differ,suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles.The aim of this study is to investigate the effects of bolt profiles(with/without ribs,rib spacing,and rib height)on the shear behaviors between the rock bolt and grout material using direct shear tests.Thereby,systematic interfacial shear tests with different bolt profiles were performed under both constant normal load(CNL)and constant normal stiffness(CNS)boundary conditions.The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does,in particular at the post-yield stage.The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions,and optimize selection of rock bolts under in situ rock conditions.
基金the National Natural Science Foundation of China(Nos.51108138,51008099)the Program for New Century Excellent Talents in University by Ministry of Education(No.NCET-06–0340)
文摘In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kinds of aggregates under different filler-asphalt ratios were measured by a dynamic shear rheometer (DSR). Moreover, four rheological parameters of K.Ziegel-B, Luis Ibrarra-A, complex shear modulus ΔG*and complex viscosity Δη* for evaluating the interaction ability were studied. Results indicate that all the four parameters can characterize the interaction ability of asphalt and aggregate correctly and feasibly. Through the comparison of sensitivities and physical meanings of the four parameters, K.Ziegel-B with high sensitivity and exact physical meaning is finally selected as the evaluation index for interaction ability of asphalt and aggregate.
基金Supported by the National Natural Science Foundation of China(Grant No.51408059)Open Fund of Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road and Traffic Safety,Ministry of Education,China(Grant No.kfj130302)
文摘The reinforced gabion wall on the west line of Xiangtan to Hengyang highway in Hunan province was studied with the large scale pullout model tests and numerical simulations to obtain the interface friction characteristics between the double twisted hexagonal gabion mesh(2.2 mm and 2.7 mm respectively) and red sandstone. The experimental results showed that the pullout displacement-shear stress curve could be roughly divided into 3 sections:the rapid growth,the steady progression and the yielding sections. The thinner gabion mesh led to the higher peak shear stress,larger cohesion and friction angle under the same normal stress. The pullout displacement-shear stress curve from the numerical simulation had two sections,namely,the rapid growth of shear stress and the yielding of gabion mesh. Under the same conditions,the 2.2 mm meshes resulted in the larger drawing coefficient and pseudo-friction coefficient and thus presented the better interface friction properties. The conceptual model suggested that the proportion of pullout force shared by the horizontal bars and longitudinal bars relied on the magnitude,the length,the coefficient of earth pressure and the friction factor,etc. The pullout bearing resistance on the transversal bars(T_1) comprises the largest proportion of the total resistance(about 62%–72%),on the other hand,the proportions of the annular pullout friction on the longitudinal bars(T_2) and the interface friction acting on the surfaces of all nodes(T_3) both grow against T_1 when the normal stress increases.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China(Nos.U1960205 and 51804024).
文摘The softening-melting characteristics of ferrous burden play a crucial role in the thickness and position of the cohesive zone.The influence of the basicity and experimental atmosphere on the softening-melting behavior of primary slag under slag-coke interaction was investigated using in situ visualization method.The mechanism was analyzed using the FactSage software,X-ray diffraction,and electron probe microanalysis.The softening and melting temperatures of the samples increased with increasing basicity under different atmospheres.The difference between softening and melting temperatures is smaller in a H_(2) atmosphere than in a CO atmosphere;in H_(2) atmosphere,the range of softening zone in the cohesive zone was significantly thinner.The formed low-melting-point FeO-bearing phases decrease when H_(2) was used as the reducing agent.In addition,according to FactSage calculations,the high content of metallic iron reduced in the H_(2) atmosphere raised the softening temperature of the primary slag.It also narrowed and moved downward the cohesive zone due to an increase in softening and melting temperatures.Meanwhile,the increase in basicity promoted the decrease in liquid ratio and improved the permeability of cohesive zone.
基金financially supported by the National Natural Science Foundation of China(No.51005049)
文摘Experiments were carried out with bypass-current MIG welding–brazing of magnesium alloy to galvanized steel to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. Experimental results indicated that the joint efficiency tended to increase at first and then to reduce with the increase of heat input. The joint efficiency reached its maximum of about 70% when the heat input was 155 J/mm. The metallurgical bonding between magnesium alloy and steel was a thin continuous reaction layer, and the intermetallic compound layer consisted of Mg–Zn and slight Fe–Al phases. It is concluded that bypass-current MIG welding–brazing is a stable welding process, which can be used to achieve defect-free joining of magnesium alloy to steel with good weld appearances.