期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Influence of Energy Transfer on the Color Temperature Change in Color-Tunable Organic Light Emitting Diodes with Interface Exciplex
1
作者 Yanbo Wang Zhiqi Kou +3 位作者 Xinyu Zhu Wenzhuo Xia Chenglin Leng Zhixiu Ma 《Optics and Photonics Journal》 CAS 2023年第2期25-34,共10页
The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. Th... The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. The research on the change trend of CCT and the law of extending the change range of CCT will help to further improve the performance of this kind of device. The present work fabricated a series of CT-WOLED devices with a simple structure, which are all composed of two ultra-thin phosphor layers (PO-01 and Flrpic) and a spacer interlayer. The yellow interface exciplex (TCTA/PO-T2T) formed between the spacer layer (PO-T2T) and transmission material (TCTA) in EML will decrease the CCT value at low voltage. The relationship between the energy transfer in EML and CCT change trend is investigated by adjusting the interface exciplexes and the thickness of the interlayer or the phosphor layer in devices A, B and C, respectively. The results demonstrate that a simple OLED device with an interlayer inserted between two ultra-thin phosphor layers can achieve a wider CCT span from 3359 K to 6451 K at voltage increases from 2.75 V to 8.25 V. . 展开更多
关键词 interface exciplex Energy Transfer Color-Tunable WOLED
下载PDF
Efficient red phosphorescent OLEDs based on the energy transfer from interface exciplex: the critical role of constituting molecules 被引量:5
2
作者 Xiaozeng Song Dongdong Zhang +2 位作者 Tianyu Huang Minghan Cai Lian Duan 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第7期836-843,共8页
A novel acceptor material,9-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole(o-DTPPC)was developed to form interface exciplex with commonly used donors,to maximize the performances of red pho... A novel acceptor material,9-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole(o-DTPPC)was developed to form interface exciplex with commonly used donors,to maximize the performances of red phosphorescent organic light emitting diodes(PHOLEDs).It is found that the exciplex involving 4,4′-(cyclohexane-1,1-diyl)bis(N,N-di-p-tolylaniline)(TAPC)exhibits the most significant thermally activated delayed fluorescence(TADF)property,derived from the high triplet energy level as well as strong hole-transporting ability of TAPC.Intriguingly,it is the same donor-acceptor combination which achieved the highest device efficiency when adopted as the host for red PHOLEDs.Maximum efficiencies as high as31.36 cd A^(-1),17.95 lm W^(-1),and 21.01%for the current efficiency,power efficiency and external quantum efficiency,respectively with low efficiency roll-off were realized.The improved performance can be attributed to the efficient TADF properties of the interface exciplex-forming host constituting TAPC,benefiting the F?rster energy transfer.The article first underlines the importance of the constituting molecules in the interface exciplex-forming hosts,shedding new insight about the choice of interface exciplex as the host for PHOLEDs,which may lead to even higher performances,paving their ways towards practical applications. 展开更多
关键词 thermally activated delayed fluorescence interface exciplex electron donors red phosphorescent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部