期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Improved Efficiency and Stability of Organic Solar Cells by Interface Modification Using Atomic Layer Deposition of Ultrathin Aluminum Oxide
1
作者 Ai Lan Yiqun Li +8 位作者 Huiwen Zhu Jintao Zhu Hong Lu Hainam Do Yifan Lv Yonghua Chen Zhikuan Chen Fei Chen Wei Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期282-290,共9页
The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)... The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture. 展开更多
关键词 atomic layer deposition interface modification organic solar cells STABILITY
下载PDF
Research progress in interface modification and thermal conduction behavior of diamond/metal composites 被引量:7
2
作者 Ping Zhu Pingping Wang +5 位作者 Puzhen Shao Xiu Lin Ziyang Xiu Qiang Zhang Equo Kobayashi Gaohui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期200-211,共12页
Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interfa... Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interface incompatibility between diamond and metal,which has a considerable impact on the performance of the composites.To improve the interface compatibility between diamond and metal,it is necessary to modify the interface of composites.This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites.Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research. 展开更多
关键词 diamond/metal interface modification thermal conductivity computational simulation
下载PDF
Skin-inspired interface modification strategy toward a structurefunction integrated hybrid smart fabric system with self-powered sensing property for versatile applications
3
作者 Xiang Cheng Teng Chen +3 位作者 De Gong Pengcheng Ma Bo Chen Jun Cai 《Nano Research》 SCIE EI CSCD 2024年第9期8200-8208,共9页
Fabric-based composites with superior mechanical properties and excellent perceptive function are highly desirable.However,it remains a huge challenge to attain structure-function integration,especially for hybrid fab... Fabric-based composites with superior mechanical properties and excellent perceptive function are highly desirable.However,it remains a huge challenge to attain structure-function integration,especially for hybrid fabric composites.Herein,a skin-inspired interface modification strategy is proposed toward this target by constructing a hybrid smart fabric system consisting of two types of smart fabrics:carbon nanotube(CNT)/MXene-modified aramid fabrics and zinc oxide nanorod(ZnO NR)-modified carbon fabrics.Based on that,flexible piezoelectric pressure sensors with skin-like hierarchical perception interfaces are fabricated,which demonstrate superb sensitivity of 2.39 V·kPa^(-1)and are capable of various wearable monitoring tasks.Besides,the interface-modified hybrid fabric reinforced plastics can also be fabricated,which are proven to possess 13.6%higher tensile strength,10.1%elastic modulus.More impressively,their average energy absorption can be improved by 111.9%,accompanied with inherent damage alert capability.This offers a paradigm to fabricate structure-function integrated hybrid smart fabric composites for the smart clothing and intelligent aerial vehicles. 展开更多
关键词 hybrid fabrics interface modification piezoelectric pressure sensors self-diagnostic composites structure-function integration
原文传递
Recent progress of interface modification of layered oxide cathode material for sodium-ion batteries
4
作者 Luyi Sun Jun Zeng +5 位作者 Xuanhong Wan Chenxi Peng Jiarui Wang Chongjia Lin Min Zhu Jun Liu 《Electron》 2024年第2期98-122,共25页
With the advantages of similar theoretical basis to lithium batteries,relatively low budget and the abundance of sodium resources,sodium ion batteries(SIBs)are recognized as the most competitive alternative to lithium... With the advantages of similar theoretical basis to lithium batteries,relatively low budget and the abundance of sodium resources,sodium ion batteries(SIBs)are recognized as the most competitive alternative to lithium-ion batteries.Among various types of cathodes for SIBs,advan-tages of high theoretical capacity,nontoxic and facile synthesis are introduced for layered transition metal oxide cathodes and therefore they have attracted huge attention.Nevertheless,layered oxide cathodes suffer from various degradation issues.Among these issues,interface instability including surface residues,phase transitions,loss of active transition metal and oxygen loss takes up the major part of the degra-dation of layered oxides.These degradation mechanisms usually lead to irreversible structure collapse and cracking generation,which signifi-cantly influence the interface stability and electrochemical performance of layered cathodes.This review briefly introduces the background of researches on layered cathodes for SIBs and their basic structure types.Then the origins and effects on layered cathodes of degradation mech-anisms are systematically concluded.Finally,we will summarize various interface modification methods including surface engineering,doping modification and electrolyte composition which are aimed to improve interface stability of layered cathodes,perspectives of future research on layered cathodes are mentioned to provide some theoretical proposals. 展开更多
关键词 interface modification interface stability layered oxides sodium ion batteries surface coating
原文传递
A facile finger-paint physical modification for bilateral electrode/electrolyte interface towards a stable aqueous Zn battery
5
作者 Hang Yang Duo Chen +6 位作者 Yicheng Tan Hao Xu Li Li Yiming Zhang Chenglin Miao Guangshe Li Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期101-109,I0004,共10页
Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint met... Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry. 展开更多
关键词 Aqueous Zinc battery Electrode/electrolyte interface interface modification MnO_(2) V_(2)O_(5) KMnHCF
下载PDF
In situ formed LiF-Li_(3)N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries 被引量:2
6
作者 Ming Wu Mengqi Li +5 位作者 Yuming Jin Xinshuang Chang Xiaolei Zhao Zhi Gu Gaozhan Liu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期272-278,共7页
Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid ele... Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid electrolytes in all-solid-state batteries with lithium anode is restricted by the side reactions at lithium/electrolytes interfaces and the growth of lithium dendrite caused by nonuniform lithium deposition.Herein,a homogeneous LiF-Li_(3)N composite protective layer is in situ formed via a manipulated reaction of pentafluorobenzamide with Li metal.The LiF-Li_(3)N layer with both high interfacial energy and interfacial adhesion energy can synergistically suppress side reactions and inhibit the growth of lithium dendrite,achieving uniform deposition of lithium.The critical current densities of Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl are increased to 3.25 and 1.25 mA cm^(-2)with Li@LiF-Li_(3)N layer,which are almost triple and twice as those of Li-symmetric cells in the absence of protection layer,respectively.Moreover,the Li@LiF-Li_(3)N/Li10GeP2S12/Li@LiF-Li_(3)N cell can stably cycle for 9000 h at 0.1 mA cm^(-2)under 0.1 mA h cm^(-2),and Li@LiF-Li_(3)N/Li_(6)PS_(5)Cl/Li@LiF-Li_(3)N cell achieves stable Li plating/stripping for 8000 h at 0.1 mA cm^(-2)under10 m A h cm^(-2).The improved dynamic stability of lithium plating/stripping in Li@LiF-Li_(3)N/Li_(10)GeP_(2)S_(12)or Li_(6)PS_(5)Cl interfaces is proved by three-electrode cells.As a result,LiCoO_(2)/electrolytes/Li@LiF-Li_(3)N batteries with Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl exhibit remarkable cycling stability of 500 cycles with capacity retentions of 93.5%and 89.2%at 1 C,respectively. 展开更多
关键词 LiF-Li_(3)N Sulfide solid electrolytes interface modification High interface energy All-solid-state batteries
下载PDF
PERFORMANCE ENHANCEMENT OF CdS NANOROD ARRAYS/P3HT HYBRID SOLAR CELLS VIA N719 DYE INTERFACE MODIFICATION
7
作者 Ya-xiong Nan Jun-jie Li +6 位作者 Wei-fei Fu Wei-ming Qiu Li-jian Zuo Hong-bin Pan Quan-xiang Yan Xiao-qiang Chen 陈红征 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第6期879-884,共6页
Improved hybrid solar cells consisting of vertical aligned cadmium sulfide (CdS) nanorod arrays and interpenetrating polythiophene (P3HT) have been achieved via modification of CdS nanorod surface by using conjuga... Improved hybrid solar cells consisting of vertical aligned cadmium sulfide (CdS) nanorod arrays and interpenetrating polythiophene (P3HT) have been achieved via modification of CdS nanorod surface by using conjugated N719 dye. The complete infiltration of P3HT between CdS nanorods interspacing was verified by scanning electron microscopy. By employing absorption and photoluminescence spectra, and current-voltage characterization the interaction between N719 molecules and CdS nanorods/P3HT interface was explored, and the role of N719 dye on the improvement of device performance was discussed. 展开更多
关键词 CdS nanorods Hybrid solar cells N719 interface modification.
原文传递
Enhanced photovoltaic performance in TiO_2/P3HT hybrid solar cell by interface modification
8
作者 王多发 陶海征 +2 位作者 赵修建 吉美妍 章天金 《Journal of Semiconductors》 EI CAS CSCD 2015年第2期38-41,共4页
A TiO2/P3HT hybrid solar cell was fabricated by infiltrating P3HT into the pores of TiO2 nanorod arrays. To further enhance the photovoltaic performance, anthracene-9-carboxylic acid was employed to modify the interfa... A TiO2/P3HT hybrid solar cell was fabricated by infiltrating P3HT into the pores of TiO2 nanorod arrays. To further enhance the photovoltaic performance, anthracene-9-carboxylic acid was employed to modify the interface of TiO2/P3HT before P3HT was coated. Results revealed that the interface treatment significantly enhances the photovoltaic performance of the cell. The efficiency of the hybrid solar cells reaches 0.28% after interface modification, which is three times higher compared with the un-modified one. We find that except for the increased exciton dissociation efficiency recognized by the previous reports, the suppressing of electron back recombination is another important factor leading to the enhanced photovoltaic performance. 展开更多
关键词 TIO2 solar cell interface modification
原文传递
Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers
9
作者 Xueyuan Wei Yang Bai Qi Chen 《Journal of Renewable Materials》 SCIE EI 2023年第1期61-77,共17页
Due to the long carrier lifetime,high carrier mobility,and high absorption coefficient of perovskite materials,the power conversion efficiency(PCE)of perovskite solar cells(PSCs)has increased from 3.8%in 2009 to 25.7%... Due to the long carrier lifetime,high carrier mobility,and high absorption coefficient of perovskite materials,the power conversion efficiency(PCE)of perovskite solar cells(PSCs)has increased from 3.8%in 2009 to 25.7%in 2021,which have already surpassed the PCE of thin-film solar cells and closes to the efficiency of Si-based photovoltaics(26.7%).Therefore,PSCs have become a promising clean energy technology for commercialization.However,the low defect formation energy of perovskite leads to a higher defect density than other conventional photovoltaic materials.It results in severe non-radiative recombination,limiting its further development and the commercialization.In this review,we summarize the mechanism and strategies for high-quality perovskite absorber fabrications to minimize the bulk and surface/interface defects of halide perovskite,including film quality development and interface modification.Strategies are proposed for further promoting the film quality and the corresponding device performance.Finally,we highlight the challenges that need to be overcome to control over the defect properties of halide perovskite. 展开更多
关键词 PEROVSKITE DEFECT interface modification film quality PASSIVATION
下载PDF
Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO 被引量:1
10
作者 Zhenyun Zhang Lei Xu Junjie Qi 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期564-570,共7页
Despite the advanced efficiency of perovskite solar cells(PSCs),electron transportation is still a pending issue.Here the polymer polyvinylpyrrolidone(PVP)is used to enhance the electron injection,which is thanks to t... Despite the advanced efficiency of perovskite solar cells(PSCs),electron transportation is still a pending issue.Here the polymer polyvinylpyrrolidone(PVP)is used to enhance the electron injection,which is thanks to the passivation of the defects at the interface between the ZnO electron transporting layer(ETL)and the perovskite.The application of the PVP layer inhibits the device degradation,and 80%of the primary efficiency is kept after 30 d storage in air condition.Additionally,the efficiency of the device is further enhanced by improving the conductivity and crystallinity of the ZnO ETL via Magnesium(Mg)doping in the ZnO nanorods(ZnO NRs).Moreover,the preparation parameters of the ZnO NRs are optimized.By employing the high-crystallinity ZnO ETL and the PVP layer,the power conversion efficiency(PCE)of the champion device is increased from 16.29%to 19.63%.These results demonstrate the advantages of combining mesoscale manipulation with interface modification and doping together. 展开更多
关键词 perovskite solar cells ZnO nanorods interface modification preparation parameters Mg doped ZnO
下载PDF
Recent advances of interface engineering in inverted perovskite solar cells
11
作者 Shiqi Yu Zhuang Xiong +6 位作者 Zhenhan Wang Haitao Zhou Fei Ma Zihan Qu Yang Zhao Xinbo Chu Jingbi You 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期53-65,共13页
Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unst... Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unstable charge transport layers,such as the hygroscopic doped spiro-OMe TAD,which affect the long-term stability.The inverted device with the p-i-n structure owns better stability when using stable undoped organic molecular or metal oxide materials.There are significant progresses in inverted PSCs,most of them related to charge transport or interface engineering.In this review,we will mainly summarize the inverted PSCs progresses related to the interface engineering.After that,we prospect the future direction on inverted PSCs. 展开更多
关键词 inverted perovskite solar cells charge transport layer interface modification defect passivation
下载PDF
A Charge Equalizer in Accordion-MXene-Modified Layer Leading to Spherical Lithium Deposition
12
作者 Yangmingyue Zhao Libo Li +3 位作者 Da Zhou Yuhang Shan Xiaochuan Chen Wenjun Cui 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期335-344,共10页
Lithium-ion batteries with polymer electrolytes(PEs)are promising candidates for high safety performance batteries.However,conventional PEs suffer from poor compatibility and high impedance of electrolyte-electrode in... Lithium-ion batteries with polymer electrolytes(PEs)are promising candidates for high safety performance batteries.However,conventional PEs suffer from poor compatibility and high impedance of electrolyte-electrode interfaces.Herein,we present a method of the interfacial modification for PEs to inhibit lithium dendrites based on the solution to the interfacial compatibility.Our strategy is to improve the interfacial properties and inhibit the dendrite generation by coating a modified layer on PEs of the anode side with acetylene black(AB)and MXene.The mixed conductive layer(MCL)can promote the generation of Li3N and LiF with a uniform arrangement of electrons to form a dense solid electrolyte interphase layer and the even lithium-ion deposition for improving the performance and stability of the battery during cycling.After adding the MCL,the discharge capacity of solid lithium-ion batteries(SLIBs)with lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)/organic modified montmorillonite(OMMT)/soybean isolate protein(SPI)/poly(vinylidene fluoride)(PVDF)(LOSP)PE from 74.2 mAh g^(-1)up to 111.1 mAh g^(-1)(AB-LiTFSI/OMMT/SPI/PVDF(AB-LOSP))and 111.6 mAh g^(-1)(AB/MXene-LiTFSI/OMMT/SPI/PVDF(AB/MXene-LOSP)).The polarization voltage dropped by 0.06 and 0.12 V,respectively.This work represents a milestone in the dendrite-free SLIBs with good performances. 展开更多
关键词 dendrite-free interface modification lithium-ion batteries polymer electrolyte SEI film
下载PDF
Anode Interfacial Issues in Solid-State Li Batteries:Mechanistic Understanding and Mitigating Strategies 被引量:2
13
作者 Jiacheng Wang Liquan Chen +1 位作者 Hong Li Fan Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期384-404,共21页
All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significa... All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB. 展开更多
关键词 all-solid-state Li metal batteries anode interfacial issues interface protection and modification interfacial reaction and evolution li dendrite growth
下载PDF
Tailoring interphase structure to enable high-rate, durable sodium-ion battery cathode 被引量:4
14
作者 Na Li Shaofei Wang +9 位作者 Enyue Zhao Wen Yin Zhigang Zhang Kang Wu Juping Xu Yoshihiro Kuroiwa Zhongbo Hu Fangwei Wang Jinkui Zhao Xiaoling Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期564-571,共8页
Na-based layered transition metal oxides with O_(3)-type structure have been considered to be promising cathodes for Na-ion batteries. However, the intrinsically limited Na-ion conductivity induced by the Otype Na-coo... Na-based layered transition metal oxides with O_(3)-type structure have been considered to be promising cathodes for Na-ion batteries. However, the intrinsically limited Na-ion conductivity induced by the Otype Na-coordinate environment compromises their rate and cycle capability, hindering their practical application. Here, we report an interphase-structure tailoring strategy that improves the electrochemical properties of O_(3)-type layered cathodes achieved through surface coating and doping processes.Specifically, a Zr-doped interphase structure is designed in the model compound NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2) using the ionic conductor Na_(3)Zr_(2)Si_(2)PO_(12) as the surface coating material and Zr-dopant provider. We discover that the modified NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)cathode shows a stable Na-storage structure as well as an enhanced rate/cycle capability. Combined with theoretical calculations, it is suggested that the superior electrochemical performances originate from the Zr-doped interphase structure, which has an enlarged Na layer spacing that forms favorable Na-ion diffusion channels. This work highlights a general material interface optimization method which opens a new perspective for fabricating high-performance electrodes for Na-ion batteries and beyond. 展开更多
关键词 Na-ion battery NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)cathode Interphase structure Zr doping Surface interface modification
下载PDF
Tuning redox activity through delithiation induced protective layer and Fe-O coordination for Li-rich cathode with improved voltage and cycle performance 被引量:1
15
作者 Kanghui Hu Li Ren +7 位作者 Weifeng Fan Bing Zhang Meihua Zuo Yanhui Zhang Genpin Lv Huiyuan Xu Wei Xiang Xiaodong Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期266-276,I0008,共12页
Li-rich layered transition metal oxides are one of the most promising cathode materials for their high energy density.However,the cathodes usually suffer from severe potential dropping and capacity fading during cycli... Li-rich layered transition metal oxides are one of the most promising cathode materials for their high energy density.However,the cathodes usually suffer from severe potential dropping and capacity fading during cycling,which are associated with the surface oxygen release and accompanied by cation densification and structural collapse.Herein,an integrative approach of simultaneous constructing uniform 3d Fe-ion doping in the transition metal layer and Li-rich Li_(5)FeO_(4) shell to grab the oxygen and prevent interfacial side reactions is proposed.The introduction of Fe induces higher redox potential and stronger 3 d Fe-O_(2)p covalent bond,triggering reversible anionic redox via a reductive coupling mechanism.And the delithiated product of Li-rich Li_(5)FeO_(4) not only acts as a protective layer alleviating the side reactions but also enhances the surface kinetic property.With the benefit of promoted reversibility of oxygen redox and enhanced surface stability,the cathode exhibits high reversible capacity and superior cycle performance.Density function theory calculation indicates that the O_(2)p non-bonding state in the cathode incorporated with Fe sits at a lower energy band,resulting in higher energy storage voltage and improved oxygen stability.Consequently,the modified cathode exhibits a discharge specific capacity of 307 m A h g^(-1)(1 C=250 m A g^(-1)),coulombic efficiency of 82.09%in the initial cycle at 0.1 C and 88.34%capacity retention after 100 cycles at 1 C.The work illustrates a strategy that could simultaneously enhance oxygen redox reversibility and interface stability by constructing lattice bond coordination and delithiation induced protective layer to develop Li-rich materials with high reversible capacity and long lifespan. 展开更多
关键词 Li-rich cathode Lattice oxygen evolution Tuning redox activity interface modification
下载PDF
UV-resistant salicylic acid as interface modifier for efficient and stable perovskite solar cells 被引量:1
16
作者 Guo-Bin Xiao Zihan Fang +2 位作者 Shengrong Yang Jing Cao Yu Tang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第6期36-40,共5页
Interfacial defect is one of the main hurdles to impede the improvement of efficiency and stability of perovskite solar cells(PSCs).Additionally,the ultraviolet(UV)irradiate induces the generation of deep defects,and ... Interfacial defect is one of the main hurdles to impede the improvement of efficiency and stability of perovskite solar cells(PSCs).Additionally,the ultraviolet(UV)irradiate induces the generation of deep defects,and further accelerate the decomposition of perovskite films.Thus,the interfacial modification is crucial to improve the ef-ficiency and stability of PSCs.Here,the salicylic acid(SA)as a multifunctional interface material is employed to modify the interface of mesoporous cerium oxide(m-CeO_(x))and perovskite.The introduced SA molecules can interact with Ce in m-CeO_(x)and Pb in perovskite through carboxylic acid functional groups to passivate interfacial defects and promote interfacial electron extraction and transport.The PSC with SA modification exhibits an improved power conversion efficiency(PCE)of 23.33%.More importantly,the SA can absorb UV light and reduce the damage of UV light to perovskite film,then improving the UV stability and overall stability of devices.This work provides a novel insight to design the interfacial modification materials for preparing efficient and stable PSCs. 展开更多
关键词 Salicylic acid interface modification UV absorption Perovskite solar cells
原文传递
Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting:A review
17
作者 Yaping Zhang Yuyu Bu +1 位作者 Lin Wang Jin-Ping Ao 《Green Energy & Environment》 SCIE CSCD 2021年第4期479-495,共17页
Photoelectrochemical(PEC)water splitting is considered as an ideal technology to produce hydrogen.Photogenerated carrier migration is one of the most important roles in the whole process of PEC water splitting.It incl... Photoelectrochemical(PEC)water splitting is considered as an ideal technology to produce hydrogen.Photogenerated carrier migration is one of the most important roles in the whole process of PEC water splitting.It includes bulk transfer inside of the photoelectrode and the exchange at the solid-liquid interface.The energy barriers during the migration process lead to the dramatic recombination of photogenerated hot carrier and the reducing of their redox capacity.Thus,an applied bias voltage should be provided to overcome these energy barriers,which brings the additional loss of energy.Plentiful researches indicate that some methods for the regulation of photogenerated hot carrier,such as p-n junction,unique transfer nanochannel,tandem nanostructure and Z-Scheme transfer structure et al.,show great potential to achieve high-efficient PEC water overall splitting without any applied bias voltage.Up to now,many reviews have summarized and analyzed the methods to enhance the PEC or photocatalysis water splitting from the perspectives of materials,nanostructures and surface modification etc.However,few of them focus on the topic of photogenerated carrier transfer regulation,which is an important and urgent developing technique.For this reason,this review focuses on the regulation of photogenerated carriers generated by the photoelectrodes and summarizes different advanced methods for photogenerated carrier regulation developed in recent years.Some comments and outlooks are also provided at the end of this review. 展开更多
关键词 PEC water Splitting Photogenerated carrier migration Charge transfer regulation Energy band engineering Solid-liquid interface modification
下载PDF
An elastic model for bioinspired design of carbon nanotube bundles
18
作者 Xiaoyu Sun Zuoqi Zhang +1 位作者 Yuanjie Xu Yongwei Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第2期205-215,共11页
Collagen fibers provide a good example of making strong micro-or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and crosslinked organization in a bottom-up manner.Mimicking the architectur... Collagen fibers provide a good example of making strong micro-or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and crosslinked organization in a bottom-up manner.Mimicking the architectural features of collagen fibers has been shown to be a promising approach to develop carbon nanotube(CNT)fibers of high performance.In the present work,an elastic model is developed to describe the load transfer and failure propagation within the bioinspired CNT bundles,and to establish the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters such as the CNT aspect ratio and longitudinal gap,interface cross-link density,and the functionalizationinduced degradation in CNTs,etc.With the model,the stress distributions along the CNT-CNT interface as well as in every individual CNT are well captured,and the failure propagation along the interface and its effects on the mechanical properties of the CNT bundles are predicted.The work may provide useful guidelines for the design of novel CNT fibers in practice. 展开更多
关键词 Carbon nanotube fiber Collagen-mimic design Staggered pattern interface modification
下载PDF
Enhancing the performance of organic solar cells by modification of cathode with a self-assembled monolayer of aromatic organophosphonic acid
19
作者 Wenlong Liu Hao Lu +5 位作者 Yan Zhang Hao Huang Xinming Zheng Yahui Liu Youzhi Wu Xinjun Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期526-530,共5页
We use a single-molecule self-assembled layer of an aromatic organophosphonic acid(2PACz) to modify the cathode interface layer in inverted organic solar cells(OSCs). The modified OSCs not only have an obvious improve... We use a single-molecule self-assembled layer of an aromatic organophosphonic acid(2PACz) to modify the cathode interface layer in inverted organic solar cells(OSCs). The modified OSCs not only have an obvious improvement in power conversion efficiency(PCE), but also demonstrate greatly enhanced air stability. Ultraviolet photoelectron spectroscopy shows that the work function of cathode interlayer after modification by 2PACz is more suitable for electron extraction. In addition, the surface energy is reduced without affecting the film deposition, which will be beneficial to reduce the interfacial traps. As a result,the PCE of OSCs based on the PBDB-T:IT-M system is increased, and its stability in air is greatly improved(remaining 88% of its initial PCE after 555 h in air). Therefore, we provide a new strategy for constructing high-performance non-fullerene OSCs with enhanced air stability. 展开更多
关键词 Organic solar cells interface modification Self-assembled monolayer Stability PCE
原文传递
全干法合成锂离子电池用高镍三元单晶颗粒及性能 被引量:1
20
作者 秦理 余海峰 +3 位作者 姜昕 陈灵 程起林 江浩 《Science China Materials》 SCIE EI CAS CSCD 2024年第2期650-657,共8页
单晶型高镍三元层状氧化物凭借高能量密度、长循环寿命和优异的安全性成为新一代锂离子电池理想的正极材料.目前,单晶型高镍三元正极通过“共沉淀+高温锂化”两步制备,不仅工艺繁琐、原材料选择单一,制备过程还会产生大量废水/气.本文... 单晶型高镍三元层状氧化物凭借高能量密度、长循环寿命和优异的安全性成为新一代锂离子电池理想的正极材料.目前,单晶型高镍三元正极通过“共沉淀+高温锂化”两步制备,不仅工艺繁琐、原材料选择单一,制备过程还会产生大量废水/气.本文提出了一种新的全干法固相合成策略,实现了单晶型高镍三元正极低成本、无废水绿色制备.在煅烧过程引入锶/钛离子作为烧结助剂,降低烧结温度来缓解锂/氧流失,从而降低锂镍混排并稳定晶格氧.此外,针对固相合成过程锂化动力学缓慢导致表面残碱较高的问题,引入硼化合物与残碱反应,不仅有效提升了界面稳定性,而且形成的离子导体还能够加速锂离子在界面处的迁移.因此,制备的单晶型高镍三元正极在0.1 C电流密度下比容量可达到191.1 mA h g^(-1),以1 C电流密度在软包全电池中循环500次后仍具有90.1%的容量保持率. 展开更多
关键词 Ni-rich cathodes all-dry solid-phase synthesis structural stability interface modification Li-ion batteries
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部