期刊文献+
共找到741篇文章
< 1 2 38 >
每页显示 20 50 100
A critical assessment of the roles of water molecules and solvated ions in acid-base-catalyzed reactions at solid-water interfaces
1
作者 Xugang Yang Zonghui Liu +2 位作者 Guoliang Wei Yu Gu Hui Shi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期1964-1990,共27页
Solid-aqueous interfaces and phenomena occurring at those interfaces are ubiquitously found in a plethora of chemical systems.When it comes to heterogeneous catalysis,however,our understanding of chemical transformati... Solid-aqueous interfaces and phenomena occurring at those interfaces are ubiquitously found in a plethora of chemical systems.When it comes to heterogeneous catalysis,however,our understanding of chemical transformations at solid-aqueous interfaces is relatively limited and primitive.This review phenomenologically describes a selection of water-engendered effects on the catalytic behavior for several prototypical acid-base-catalyzed reactions over solid catalysts,and critically assesses the general and special roles of water molecules,structural moieties derived from water,and ionic species that are dissolved in it,with an aim to extract novel concepts and principles that underpin heterogeneous acid-base catalysis in the aqueous phase.For alcohol dehydration catalyzed by solid Bronsted acids,rate inhibition by water is most typically related to the decrease in the acid strength and/or the preferential solvation of adsorbed species over the transition state as water molecules progressively solvate the acid site and form extended networks wherein protons are mobilized.Water also inhibits dehydration kinetics over most Lewis acid-base catalysts by competitive adsorption,but a few scattered reports reveal substantial rate enhancements due to the conversion of Lewis acid sites to Brønsted acid sites with higher catalytic activities upon the introduction of water.For aldol condensation on catalysts exposing Lewis acid-base pairs,the addition of water is generally observed to enhance the rate when C–C coupling is rate-limiting,but may result in rate inhibition by site-blocking when the initial unimolecular deprotonation is rate-limiting.Water can also promote aldol condensation on Brønsted acidic catalysts by facilitating inter-site communication between acid sites through hydrogen-bonding interactions.For metallozeolite-catalyzed sugar isomerization in aqueous media,the nucleation and networking of intrapore waters regulated by hydrophilic entities causes characteristic enthalpy-entropy tradeoffs as these water moieties interact with kinetically relevant hydride transfer transition states.The discussed examples collectively highlight the utmost importance of hydrogen-bonding interactions and ionization of covalently bonded surface moieties as the main factors underlying the uniqueness of water-mediated interfacial acid-base chemistries and the associated solvation effects in the aqueous phase or in the presence of water.A perspective is also provided for future research in this vibrant field. 展开更多
关键词 acid-base catalysis Solid-aqueous interfaces Water Aqueous-phase reaction Hydronium ion Hydrogen-bonding interaction Local ionic strength effect
下载PDF
In situ atomic-scale tracking of unusual interface reaction circulation and phase reversibility in(de)potassiated alloy-typed anode
2
作者 Lin Su Ruining Fu +4 位作者 Shuangying Lei Yuchen Pan Chongyang Zhu Pengcheng Liu Feng Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期241-249,I0006,共10页
Alloy-typed anode materials,endowed innately with high theoretical specific capacity,hold great promise as an alternative to intercalation-typed counterparts for alkali-ion batteries.Despite tremendous efforts devoted... Alloy-typed anode materials,endowed innately with high theoretical specific capacity,hold great promise as an alternative to intercalation-typed counterparts for alkali-ion batteries.Despite tremendous efforts devoted to addressing drastic volume change and severe pulverization issues of such anodes,the underlying mechanisms involving dynamic phase evolutions and reaction kinetics have not yet been fully comprehended.Herein,taking antimony(Sb)anode as a representative paradigm,its microscopic operating mechanisms down to the atomic scale during live(de)potassiation cycling are systematically unraveled using in situ transmission electron microscopy.Highly reversible phase transformations at single-particle level,that are Sb←→KSb_(2)←→KSb←→K_5Sb_(4)←→K_(3)Sb,were revealed during cycling.Meanwhile,multiple phase interfaces associated with different reaction kinetics coexisted and this phenomenon was properly elucidated in the context of density functional theory calculations.Impressively,previously unexplored unidirectional circulation of reaction interfaces within individual Sb particle is confirmed for both potassiation and depotassiation.Based on the empirical results,the surface diffusion-mediated potassiation-depotassiation pathways at single-particle level are suggested.This work affords new insights into energy storage mechanisms of Sb anode and valuable guidance for targeted optimization of alloy-typed anodes(not limited to Sb)toward advanced potassium-ion batteries. 展开更多
关键词 Alloy-typed anode Potassium storage mechanism In situ transmission electron microscopy reaction interface
下载PDF
Interface Reaction of SiO_2/Ta and Its Influence on Cu Diffusion 被引量:1
3
作者 龙世兵 马纪东 +4 位作者 于广华 赵洪辰 朱逢吾 张国海 夏洋 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第10期1046-1050,共5页
Ta/NiFe film is deposited on Si substrate precoated with SiO_2 by magnetron sputtering.SiO_2/Ta interface and Ta_5Si_3 standard sample are investigated by using X-ray photoelectron spectroscopy (XPS) and peak decompos... Ta/NiFe film is deposited on Si substrate precoated with SiO_2 by magnetron sputtering.SiO_2/Ta interface and Ta_5Si_3 standard sample are investigated by using X-ray photoelectron spectroscopy (XPS) and peak decomposition technique.The results show that there is a thermodynamically favorable reaction at the SiO_2/Ta interface:37Ta+15SiO_2=5Ta_5Si_3+6Ta_2O_5.The more stable products Ta_5Si_3 and Ta_2O_5 may be beneficial to stop the diffusion of Cu into SiO_2. 展开更多
关键词 copper interconnection in ULSI diffusion barrier interface reaction X-ray photoelectron spectroscopy
下载PDF
Interfacial reaction between AZ91D magnesium alloy melt and mild steel under high temperature 被引量:1
4
作者 Jia-hong Dai Jian-yue Zhang +5 位作者 Bin Jiang Xiang-jun Xu Zhong-tao Jiang Hong-mei Xie Qing-shan Yang Guo-qing Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第2期159-167,共9页
The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and... The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time. 展开更多
关键词 AZ91D mild steel interface reaction intermetallic growth KINETICS
下载PDF
INTERFACE REACTION IN MAGNETIC MULTILAYERS 被引量:47
5
作者 G.H. Yu, M.H Li, F. W Zhu, X.F. Cui and J.L. Jin ( Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, China) ( State key laboratory for Advanced Metals and Materials, University of Science and Technology Beijing 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第6期479-484,共6页
Ta/NiO/NiFe/Ta multilayers were prepared by rf reactive and dc magnetron sputtering. The exchange coupling field (Hex) between NiO and NiFe reached 120O e. The composition and chemical states at the interface region o... Ta/NiO/NiFe/Ta multilayers were prepared by rf reactive and dc magnetron sputtering. The exchange coupling field (Hex) between NiO and NiFe reached 120O e. The composition and chemical states at the interface region of NiO/NiFe were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there are two thermodynamically favorable reactions at NiO/NiFe interface: NiO+Fe=Ni+FeO and 3NiO+2Fe=3Ni+Fe2O3. The thickness of the chemical reaction as estimated by angle-resolved XPS was about 1-1.5 nm. These interface reaction products are magnetic defects, and we believe that the Hex and the coercivity (Hc) of NiO/NiFe are affected by these defects. Moreover, the results also show that there is an intermixing layer at the Ta/NiO (and NiO/Ta) interface due to a thermodynamically favorable reaction: 2Ta+5NiO+Ta2O5. This interface reaction has an effect on the exchange coupling as well. The thickness of the intermixing layer as estimated by XPS depth-profiles was about 8-10 nm. 展开更多
关键词 FABRICATION interfaces (materials) Magnetic materials MAGNETRONS reaction kinetics SPUTTERING
下载PDF
Recent Advances in Interface Engineering for Electrocatalytic CO_(2) Reduction Reaction 被引量:13
6
作者 Junjun Li Sulaiman Umar Abbas +2 位作者 Haiqing Wang Zhicheng Zhang Wenping Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期499-533,共35页
Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically re... Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically reduce CO_(2) emission and contribute to carbon-neutral cycle. E cient electrocatalytic reduction of chemically inert CO_(2) is challenging from thermodynamic and kinetic points of view. Therefore,low-cost,highly e cient,and readily available electrocatalysts have been the focus for promoting the conversion of CO_(2). Very recently,interface engineering has been considered as a highly e ective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation,regulations of electron/proton/mass/intermediates,and the control of local reactant concentration,thereby achieving desirable reaction pathway,inhibiting competing hydrogen generation,breaking binding-energy scaling relations of intermediates,and promoting CO_(2) mass transfer. In this review,we aim to provide a comprehensive overview of current developments in interface engineering for CO_(2) RR from both a theoretical and experimental stand-point,involving interfaces between metal and metal,metal and metal oxide,metal and nonmetal,metal oxide and metal oxide,organic molecules and inorganic materials,electrode and electrolyte,molecular catalysts and electrode,etc. Finally,the opportunities and challenges of interface engineering for CO_(2) RR are proposed. 展开更多
关键词 interface engineering CO_(2)reduction reaction ELECTROCATALYSIS HETEROSTRUCTURE
下载PDF
INTERFACE REACTION OF TiC_p-REINFORCED Ti-MATRIX COMPOSITE 被引量:3
7
作者 Zeng Quanpu, Mao Xiaonan, Lu Feng 《中国有色金属学会会刊:英文版》 CSCD 1997年第4期81-84,共4页
INTERFACEREACTIONOFTiCpREINFORCEDTiMATRIXCOMPOSITE①ZengQuanpu,MaoXiaonan,LuFengNorthwestInstituteforNonfer... INTERFACEREACTIONOFTiCpREINFORCEDTiMATRIXCOMPOSITE①ZengQuanpu,MaoXiaonan,LuFengNorthwestInstituteforNonferousMetalResearch,... 展开更多
关键词 TI MATRIX composites TIC interface reaction
下载PDF
Comparison of the interface reaction behaviors of CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) solid-state systems based on the diffusion couple method 被引量:4
8
作者 Jing Wen Hongyan Sun +3 位作者 Tao Jiang Bojian Chen Fangfang Li Mengxia Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期834-843,共10页
The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting p... The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese. 展开更多
关键词 solid-state reaction reaction regularity of calcium and vanadium reaction regularity of manganese and vanadium diffusion couple method interface reaction behavior
下载PDF
Stabilizing iridium sites via interface and reconstruction regulations for water oxidation in alkaline and acidic media
9
作者 Weibin Chen Yanhui Song +2 位作者 Lei Li Junjie Guo Zhan Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期355-363,I0009,共10页
Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to sta... Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to stabilize the Ir sites for effective OER.When anchored on the surface of Co_(3)O_(4)in the form of Ir(OH)_6 species,the created Ir-OH-Co interface leads to a limited stability and poor acidic OER due to Ir leaching.When doped into Co_(3)O_(4)lattice,the analyses of X-ray absorption spectroscopy,in-situ Raman,and OER measurements show that the partially replacement of Co in Co_(3)O_(4)by Ir atoms inclines to cause strong electronic effect and activate lattice oxygen in the presence of Ir-O-Co interface,and simultaneously master the reconstruction effect to mitigate Ir dissolution,realizing the improved OER activity and stability in alkaline and acidic environments.As a result,Ir_(lat)@Co_(3)O_(4)with Ir loading of 3.67 wt%requires 294±4 mV/285±3 mV and 326±2 mV to deliver 10 mA cm^(-2)in alkaline(0.1 M KOH/1.0 M KOH)and acidic(0.5 M H_(2)SO_(4))solution,respectively,with good stability. 展开更多
关键词 interface effect RECONSTRUCTION Ir dissolution Ir-O-Co Oxygen evolution reaction
下载PDF
On the perturbation solution of interface-reaction controlled diffusion in solids 被引量:1
10
作者 Zhi-Wei Cui Feng Gao Jian-Min Qu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1049-1057,共9页
Insertion of species A into species B forms a product P through two kinetic processes, namely, (1) the chemical reaction between A and B that occurs at the B-P interface, and (2) the diffusion of species A in prod... Insertion of species A into species B forms a product P through two kinetic processes, namely, (1) the chemical reaction between A and B that occurs at the B-P interface, and (2) the diffusion of species A in product P. These two processes are symbiotic in that the chemical reaction provides the driving force for the diffusion, while the diffusion sustains the chemical reaction by providing sufficient reactant to the reactive interface. In this paper, a math- ematical framework is developed for the coupled reaction- diffusion processes. The resulting system of boundary and initial value problem is solved analytically for the case of interface-reaction controlled diffusion, i.e., the rate of diffu- sion is much faster than the rate of chemical reaction at the interface so that the final kinetics are limited by the interface chemical reaction. Asymptotic expressions are given for the velocity of the reactive interface and the concentration of diffusing species under two different boundary conditions. 展开更多
关键词 interface DIFFUSION Chemical reaction PERTURBATION
下载PDF
Modulation on electrostatic potential to build a firm bridge at NiO_(x)/perovskite interface for efficient and stable perovskite solar cells
11
作者 Xiangbao Yuan Xufeng Ling +4 位作者 Hongyu Wang Chengxia Shen Ru Li Yehao Deng Shijian Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期249-258,共10页
The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesir... The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesirable redox reactions cause severe interfacial non-radiative recombination and open-circuit voltage(Voc)loss.Herein,a series of self-assembled molecules(SAMs)are employed to bind,bridge,and stabilize the NiO_(x)/perovskite interface by regulating the electrostatic potential.Based on systematically theoretical and experimental studies,4-pyrazolecarboxylic acid(4-PCA)is proven as an efficient molecule to simultaneously passivate the NiO_(x)and perovskite surface traps,release the interfacial tensile stress as well as quench the detrimental interface redox reactions,thus effectively suppressing the interfacial non-radiative recombination and enhancing the quality of perovskite crystals.Consequently,the PSCs with 4-PCA treatment exhibited an eminently increased Voc,leading to a significant increase in power conversion efficiency from 21.28%to 23.77%.Furthermore,the unencapsulated devices maintain 92.6%and 81.3%of their initial PCEs after storing in air with a relative humidity of 20%–30%for 1000 h and heating at 65℃for 500 h in a N_(2)-filled glovebox,respectively. 展开更多
关键词 Perovskite solar cells Nickel oxide interface defects passivation Redox reaction Nonradiative recombination
下载PDF
Robust interface layers with redox shuttle reactions suppress the dendrite growth for stable solid-state Li metal batteries 被引量:2
12
作者 Shuaibo Zeng Gowri Manohari Arumugam +5 位作者 Wentao Li Xiahu Liu Xin Li Hai Zhong Fei Guo Yaohua Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期222-229,共8页
Designing a durable lithium metal anode for solid state batteries requires a controllable and uniform deposition of lithium, and the metal lithium layer should maintain a good interface contact with solid state electr... Designing a durable lithium metal anode for solid state batteries requires a controllable and uniform deposition of lithium, and the metal lithium layer should maintain a good interface contact with solid state electrolyte during cycles. In this work, we construct a robust functional interface layer on the modified LiB electrode which considerably improves the electrochemical stability of lithium metal electrode in solid state batteries. It is found that the functional interface layer consisting of polydioxolane, polyiodide ion and Li TFSI effectively restrains the growth of lithium dendrites through the redox shuttle reaction of I-/I3-and maintains a good contact between lithium anode and solid electrolyte during cycles. Benefit from these two advantages, the modified Li-B anode exhibits a remarkable cyclic performance in comparison with those of the bare Li-B anode. 展开更多
关键词 Redox shuttle reaction Robust interface layer Lithium dendrites Long-lasting effect Solid-state batteries
下载PDF
Interface reaction in aluminium matrix composite at laser welding 被引量:1
13
作者 刘黎明 祝美丽 +1 位作者 许德胜 吴林 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期671-674,共4页
Interface reaction of SiC w/6061Al aluminium matrix composite subjected to laser welding was studied. It is pointed out that the main reason for bad weldability of the material is concerned with the interface reaction... Interface reaction of SiC w/6061Al aluminium matrix composite subjected to laser welding was studied. It is pointed out that the main reason for bad weldability of the material is concerned with the interface reaction during the welding. Effects of welding parameters on interface reaction were also investigated. The results show that the interface bonding state can be improved by laser beam, and the main welding parameter affecting the strength of weld is laser output power. The smaller the output power, the lower the extent of interface reaction and the better the mechanical properties. 展开更多
关键词 aluminium matrix composite laser welding interface reaction
下载PDF
In-situ physical/chemical cross-linked hydrogel electrolyte achieving ultra-stable zinc anode-electrolyte interface towards dendrite-free zinc ion battery
14
作者 Chen-Yang Li Jiang-Lin Wang +7 位作者 Dong-Ting Zhang Min-Peng Li Hao Chen Wei-Hai Yi Xin-Ying Ren Bao Liu Xue-Feng Lu Mao-Cheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期342-351,I0007,共11页
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ... Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries. 展开更多
关键词 In-suit CPZ hydrogel electrolyte Hydrogen evolution reaction and zinc corrosion Dendrites growth Zinc anode-electrolyte interface Zn ion batteries
下载PDF
Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage
15
作者 Qiang Tang Yingze Song +4 位作者 Xuan Cao Cheng Yang Dong Wang Tingting Qin Wei Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3543-3552,共10页
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi... Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems. 展开更多
关键词 Magnesium-ion battery Bi2O3-Bi2S3 heterostructure interface and energy band engineering Electrochemical reaction kinetics Electrode integrity
下载PDF
DIFFUSION REACTION IN THE INTERFACE OF TITANIUM/MILD STEEL COMPOSITE
16
作者 Yang Yang Zhang Xinming(Department of Materials Science and Engineering, Central South Universityof Technology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1996年第2期32-36,共5页
The microstructure together with the formation and growth ofreaction phases in the interfacial diffusion zone of the explosive cladding TA2/A3 has been investigated by means of OM, SEM, AES and XRD techniques. When th... The microstructure together with the formation and growth ofreaction phases in the interfacial diffusion zone of the explosive cladding TA2/A3 has been investigated by means of OM, SEM, AES and XRD techniques. When the specimen annealed at temperature under the βTi→αTi transformation, i. e. below 1173 K, only TiC forms along TA2 side of interface and hinders the interdiffusion of Fe and Ti atoms, thus Fe2Ti or FeTi is unable to occur. While heated up to the transformation temperature of βTi, e. g, over 1223 K, the parabolic growth of intermetallic compounds of Fe2Ti and FeTi with layer structure may form intergranularly and the formation of βTi or βTi+αTi structure at the Fe enriched side of TA2 and the martensitic transformation products at the Fedepleted side are observed owing to the diffusion of Fe. Furthermore, the growth of βTi transformation layer is revealed to follow the parabolic rule. 展开更多
关键词 interface DIFFUSION reaction INTERMETALLIC compound〖WT5BZ
下载PDF
SiC Formation Through Interface Reaction between C_(60) and Si in Plasma Environment
17
作者 丁芳 孟亮 朱晓东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第1期67-70,共4页
The formation of SiC through the interface reaction between C60 and Si in a plasmaassisted chemical vapour deposition system (PACVD) is investigated with a C60 film previously deposited on Si wafers. The composition... The formation of SiC through the interface reaction between C60 and Si in a plasmaassisted chemical vapour deposition system (PACVD) is investigated with a C60 film previously deposited on Si wafers. The composition and structure of the deposited samples were characterized by micro-Raman spectroscopy and X-ray diffraction (XRD). The results showed that SiC film was formed successfully in hydrogen plasma at a substrate temperature of 800℃ . The hydrogen atoms in plasma were found to enhance the production of SiC. Furthermore, the effects of the added CH4 on the formation of film were studied. Introduction of CH4 simultaneously with H2 at the beginning would suppress the formation of the initial layer of SiC due to a carbon-rich environment on the substrate, which would be disadvantageous to the further growth of the SiC film. 展开更多
关键词 SIC interface reaction C60 plasma
下载PDF
Development of Sb Microelectrode and In-situ pH Measurement of Electroless Nickel Reaction Interface
18
作者 金莹 孙冬柏 +1 位作者 俞宏英 杨德钧 《Rare Metals》 SCIE EI CAS CSCD 1998年第4期54-58,共5页
Sb microelectrodes were prepared by plating. The results of testing show that they have excellent stability, quick responding speed, high pH sensitivity (35~40 mV/pH) and long useful life in high temperature acidic e... Sb microelectrodes were prepared by plating. The results of testing show that they have excellent stability, quick responding speed, high pH sensitivity (35~40 mV/pH) and long useful life in high temperature acidic electroless nickel (EN) bath. By using Sb microelectrode, the pH value in EN reaction interface was measured in situ . There exists the fluctuation of pH during EN plating, and the amplitude of fluctuation tends to decrease with plating time. The largest fluctuation amplitude can reach 1~2 pH value. The in situ pH measurement provides reliable experimental results for explaining the formation of layer structure of EN deposit. 展开更多
关键词 Sb microelectrode In situ pH measurement Electroless nickel reaction interface
下载PDF
Interface Reaction of Ta/NiFe and NiFe/Ta and the Dead Layer
19
作者 HongchenZHAO GuanghuaYU HongSI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第2期239-240,共2页
The structures of Ta/Ni81Fe19 and Ni81Fe19/Ta are commonly used in magnetoresistance multilayers. It is found that the thickness of dead layer in Ta/Ni81Fe19/Ta was about 1.6±0.2nm. X-ray photoelectron spectrosco... The structures of Ta/Ni81Fe19 and Ni81Fe19/Ta are commonly used in magnetoresistance multilayers. It is found that the thickness of dead layer in Ta/Ni81Fe19/Ta was about 1.6±0.2nm. X-ray photoelectron spectroscopy (XPS) was used to study the interfaces of Ta/Ni81Fe19 and Ni81Fe19/Ta. The results show that there is a reaction at the two interfaces: 2Ta+Ni=NiTa2, which caused the thinning of the effective NiFe layer. Furthermore, this reaction could also explain the phenomenon that the dead layer thickness of spin valves multilayers prepared by MBE is thinner than those prepared by magnetron sputtering. 展开更多
关键词 interface reaction Dead layer X-ray photoelectron spectroscopy
下载PDF
Effect of Nb and alloying elements on interface reaction between high Nb-containing TiAl alloys and ZrO_2-based ceramic moulds
20
作者 Liang Yang Wen-bin Kan +3 位作者 You-wei Zhang Chun-ling Bao Shi-bing Liu Jun-pin Lin 《China Foundry》 SCIE CAS 2015年第5期362-366,共5页
In the present study, Ti-45Al-(6, 7, 8)Nb(at%) and Ti-45Al-8Nb-0.5(Mn, Si, Y, B) alloys were prepared by arc melting and casting into Zr O2(Y2O3 stabilized) ceramic moulds to study the effect of alloying elements Nb a... In the present study, Ti-45Al-(6, 7, 8)Nb(at%) and Ti-45Al-8Nb-0.5(Mn, Si, Y, B) alloys were prepared by arc melting and casting into Zr O2(Y2O3 stabilized) ceramic moulds to study the effect of alloying elements Nb and Mn, Si, Y, B on the interfacial reaction between casting Ti Al alloys and ceramic moulds by SEM, and the elements' distribution in the interface reaction layer by line scanning. The results showed that with an increase in Nb content, the interfacial reaction weakened and the thickness of the reaction layer decreased gradually. The interface reaction thickness of the alloys with Nb content of 6, 7, 8at% were 60, 34 and 26 μm, respectively. Clearly, the addition of 8at% Nb to Ti-45 Al is the best for the thickness of the reaction layer. The addition of Nb would form a Nb-rich film in the reaction layer, which could reduce the solubility of oxygen in the interface, and suppress further diffusion of oxygen to the matrix. If the same content of Mn, Si, Y, or B alloying elements were added respectively to Ti-45Al-8Nb, the thickness of the interface reaction layer from large to small was as follows: Mn>Si>Y>B. The interface reaction thickness increased after 0.5at% Mn added, had no obvious change after 0.5at% Si addition, and decreased after adding 0.5at% Y or B. The introduced elements, which formed a protective film or/and promoted the formation of a dense aluminum oxide layer, would be of benefit to the resistance of interfacial reaction. 展开更多
关键词 high Nb containing Ti Al alloys investment casting interface reaction alloying
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部