A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of ...A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.展开更多
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind...Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.展开更多
Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, a...Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, and the fracture processes of three phase interfaces. The results show that the α/α and α/β interfaces have larger tensile strength than that of β/β interface. The fractures of both α/α and β/β interfaces are ductile fractures, while the α/β fractures abruptly._Further analyses show that the fracture of the α/β occurs at the interface.展开更多
To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as ...To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.展开更多
A multifunctional polymeric nanofilm of triazinedithiolsilane monosodium salt, which can resist corrosion and activatecopper surface concurrently, was prepared by galvanostatic technique and the following hydrolysis-c...A multifunctional polymeric nanofilm of triazinedithiolsilane monosodium salt, which can resist corrosion and activatecopper surface concurrently, was prepared by galvanostatic technique and the following hydrolysis-condensation approach.Electrochemical tests were carried out to evaluate the resistant ability of nanofilm. The changes of functional groups atop thenanofilms were monitored with Fourier transform infrared spectroscopy (FT-IR) and contact angles (CA) simultaneously. Thechemical composition and the morphology of the polymeric nanofilm were investigated by X-ray photoelectron spectroscopy (XPS)and scanning electron microscope (SEM), respectively. The results reveal that the preferentially developed disulfide units protect thecopper during the whole preparation process, and the subsequently hydrolyzed nanofilms without/with heating shape into newinterface phases bearing the multifunctionality. This multifunctional interface (the polymeric nanofilm on copper surface) opens upthe possibilities for other OH-containing reagents to be anchored onto copper surface in demanding researches or industrialapplications.展开更多
Electrocatalysis is a surface-sensitive process,in which the catalytic activity of electrocatalyst highly re-lates to the surface adsorption/desorption behaviors of the reactants/intermediates/products on the cat-alyt...Electrocatalysis is a surface-sensitive process,in which the catalytic activity of electrocatalyst highly re-lates to the surface adsorption/desorption behaviors of the reactants/intermediates/products on the cat-alytically active sites.Surface chemical microenvironment engineering via organic molecules functional-ization is a promising strategy to tune the electrocatalytic activity since it can well modify the elec-trode/electrolyte interface and alter the reaction pathways.In this review,we summarize the recent progress of surface microenvironment engineering of electrocatalysts induced by organic molecules func-tionalization,with the special focus on the organic molecule-assisted growth mechanism and unique electronic effect.More importantly,the applications of organic molecule functionalized catalysts in var-ious electrocatalytic reactions are also systematically summarized,along with a deep discussion on the conclusion and perspective.This work will open a new avenue for the construction and modification of advanced electrocatalysts based on organic molecule-mediated interface engineering.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 21273058, 21673064, 51802059 and 21503059)China Postdoctoral Science Foundation (Grant Nos. 2018M631938, 2018T110307 and 2017M621284)+1 种基金Heilongjiang Postdoctoral Fund (LBH-Z17074)Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2019040 and 2019041)
文摘A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.
基金partially funded by Department of Science and Technology (DST), Govt. of Indiaproject SR/ FTP/ETA-61/2010
文摘Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50874079,51002102,and 61205179)the Natural Science Foundation of Shanxi Province,China(Grant No.2009021026)
文摘Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, and the fracture processes of three phase interfaces. The results show that the α/α and α/β interfaces have larger tensile strength than that of β/β interface. The fractures of both α/α and β/β interfaces are ductile fractures, while the α/β fractures abruptly._Further analyses show that the fracture of the α/β occurs at the interface.
文摘To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.
基金Project(2013DFR40700)supported by International S&T Cooperation Program of ChinaProjects(21174034,51003019,51302280)supported by the National Natural Science Foundation of China
文摘A multifunctional polymeric nanofilm of triazinedithiolsilane monosodium salt, which can resist corrosion and activatecopper surface concurrently, was prepared by galvanostatic technique and the following hydrolysis-condensation approach.Electrochemical tests were carried out to evaluate the resistant ability of nanofilm. The changes of functional groups atop thenanofilms were monitored with Fourier transform infrared spectroscopy (FT-IR) and contact angles (CA) simultaneously. Thechemical composition and the morphology of the polymeric nanofilm were investigated by X-ray photoelectron spectroscopy (XPS)and scanning electron microscope (SEM), respectively. The results reveal that the preferentially developed disulfide units protect thecopper during the whole preparation process, and the subsequently hydrolyzed nanofilms without/with heating shape into newinterface phases bearing the multifunctionality. This multifunctional interface (the polymeric nanofilm on copper surface) opens upthe possibilities for other OH-containing reagents to be anchored onto copper surface in demanding researches or industrialapplications.
基金supported by the Key Research&Development and Promotion Projects in Henan Province(No.232102230079).
文摘Electrocatalysis is a surface-sensitive process,in which the catalytic activity of electrocatalyst highly re-lates to the surface adsorption/desorption behaviors of the reactants/intermediates/products on the cat-alytically active sites.Surface chemical microenvironment engineering via organic molecules functional-ization is a promising strategy to tune the electrocatalytic activity since it can well modify the elec-trode/electrolyte interface and alter the reaction pathways.In this review,we summarize the recent progress of surface microenvironment engineering of electrocatalysts induced by organic molecules func-tionalization,with the special focus on the organic molecule-assisted growth mechanism and unique electronic effect.More importantly,the applications of organic molecule functionalized catalysts in var-ious electrocatalytic reactions are also systematically summarized,along with a deep discussion on the conclusion and perspective.This work will open a new avenue for the construction and modification of advanced electrocatalysts based on organic molecule-mediated interface engineering.