Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In ...Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In order to avoid the unphysical motion of the interface,a novel eddy-viscosity eliminator based on sigmoid functions is designed to reduce the excessive turbulence level,and the eddy-viscosity eliminator based on polynomials is extracted from the cavitation simulations.Surface elevations by combining the eddy-viscosity eliminators and classical two-equation closure models are compared with the experiments,the ones by using the adaptive asymptotic model(AAM)and the ones by using the modified two-equation closure models.The root-mean-squared error(RMSE)is introduced to quantify the accuracies of surface elevations and the forces.The relation between the turbulence level in the transition layer and RMSEs of surface elevations is studied.Besides,the parametric analysis of the eddy-viscosity eliminators is carried out.The studies suggest that(1)the excessive turbulence level in the transition layer around the interface has a significant influence on the accuracies of surface elevations and the forces;(2)the eddy-viscosity eliminators can effectively reduce the excessive turbulence level in the transition layer to avoid the unphysical motion of the interface;(3)the k-ωSST model combined with the eddy-viscosity eliminators is appropriate for predicting surface elevations and forces in RANS simulations of sloshing flow.展开更多
Semi-Lagrangian(S-L)methods have no CFL stability constraint,and are more stable than the Eulerian methods.In the literature,the S-L method for the levelset re-initialization equation was complicated,which may be unne...Semi-Lagrangian(S-L)methods have no CFL stability constraint,and are more stable than the Eulerian methods.In the literature,the S-L method for the levelset re-initialization equation was complicated,which may be unnecessary.Since the re-initialization procedure is auxiliary,we propose to use the first-order S-L scheme coupled with a projection technique to improve the accuracy at the grid points just adjacent to the interface.Standard second-order S-L method is used for evolving the level-set convection equation.The implementation is simple,including on the block-structured adaptive mesh.The efficiency of the S-L method is demonstrated by extensive numerical examples including passive convection of interfaces with corners/kinks/large deformation under given velocity fields,a geometrical flow with topological changes,simulations of bubble/droplet dynamics in incompressible twophase flows.In terms of accuracy it is comparable to the other existing methods.展开更多
A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the allo...A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the alloy melt was investigated by performing differential scanning calorimeter tests and designed water quenching experiment at a certain temperature.Results show that iron-rich nanoparticles are formed in the Cu-1wt.%Fe alloy melt before primaryα-Cu forms,which is not consistent with equilibrium phase diagram.Mechanism that iron-rich nanoparticles are uniformly captured in the matrix was described,which is that numerous nanoparticles follow Brownian motions and are engulfed in the solidified matrix which makes it possible to form uniformly distributed nanoparticles reinforced single crystal Cu-1wt.%Fe alloy.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11802176,11802301)。
文摘Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In order to avoid the unphysical motion of the interface,a novel eddy-viscosity eliminator based on sigmoid functions is designed to reduce the excessive turbulence level,and the eddy-viscosity eliminator based on polynomials is extracted from the cavitation simulations.Surface elevations by combining the eddy-viscosity eliminators and classical two-equation closure models are compared with the experiments,the ones by using the adaptive asymptotic model(AAM)and the ones by using the modified two-equation closure models.The root-mean-squared error(RMSE)is introduced to quantify the accuracies of surface elevations and the forces.The relation between the turbulence level in the transition layer and RMSEs of surface elevations is studied.Besides,the parametric analysis of the eddy-viscosity eliminators is carried out.The studies suggest that(1)the excessive turbulence level in the transition layer around the interface has a significant influence on the accuracies of surface elevations and the forces;(2)the eddy-viscosity eliminators can effectively reduce the excessive turbulence level in the transition layer to avoid the unphysical motion of the interface;(3)the k-ωSST model combined with the eddy-viscosity eliminators is appropriate for predicting surface elevations and forces in RANS simulations of sloshing flow.
基金This work is partially supported by National natural science fund of China(No.91430213 and No.11571293)Hunan Provincial Innovation Foundation for Postgraduate(No.CX2015B208)。
文摘Semi-Lagrangian(S-L)methods have no CFL stability constraint,and are more stable than the Eulerian methods.In the literature,the S-L method for the levelset re-initialization equation was complicated,which may be unnecessary.Since the re-initialization procedure is auxiliary,we propose to use the first-order S-L scheme coupled with a projection technique to improve the accuracy at the grid points just adjacent to the interface.Standard second-order S-L method is used for evolving the level-set convection equation.The implementation is simple,including on the block-structured adaptive mesh.The efficiency of the S-L method is demonstrated by extensive numerical examples including passive convection of interfaces with corners/kinks/large deformation under given velocity fields,a geometrical flow with topological changes,simulations of bubble/droplet dynamics in incompressible twophase flows.In terms of accuracy it is comparable to the other existing methods.
文摘A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the alloy melt was investigated by performing differential scanning calorimeter tests and designed water quenching experiment at a certain temperature.Results show that iron-rich nanoparticles are formed in the Cu-1wt.%Fe alloy melt before primaryα-Cu forms,which is not consistent with equilibrium phase diagram.Mechanism that iron-rich nanoparticles are uniformly captured in the matrix was described,which is that numerous nanoparticles follow Brownian motions and are engulfed in the solidified matrix which makes it possible to form uniformly distributed nanoparticles reinforced single crystal Cu-1wt.%Fe alloy.