期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Superior strength-plasticity synergy in a heterogeneous lamellar Ti_(2)AlC/TiAl composite with unique interfacial microstructure 被引量:1
1
作者 Pei Liu Bo Hou +3 位作者 Aiqin Wang Jingpei Xie Zhenbo Wang Feng Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期21-32,共12页
Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have o... Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have obtained a novel heterogeneous lamellar Ti_(2)AlC/TiAl composite with superior strength-plasticity synergy,i.e.,compressive strength of∼2065 MPa and fracture strain of∼27%.A combination of micropil-lar compression and large-scale atomistic simulation has revealed that the superior strength-plasticity synergy is attributed to the collaboration of Ti_(2)AlC reinforcement,lamellar architecture and heteroge-neous interface.More specifically,multiple deformation modes in Ti_(2)AlC,i.e.,basal-plane dislocations,atomic-scale ripples and kink bands,could be activated during the compression,thus promoting the plas-tic deformation capability of composite.Meanwhile,the lamellar architecture could not only induce sig-nificant stress redistribution and crack deflection between Ti_(2)AlC and TiAl,but also generate high-density SFs and DTs interactions in TiAl,leading to an improved strength and strain hardening ability.In addi-tion,profuse unique Ti_(2)AlC(1¯10¯3)/TiAl(111)interfaces in the composite could dramatically contribute to the strength and plasticity due to the interface-mediated dislocation nucleation and obstruction mecha-nisms.These findings offer a promising paradigm for tailoring microstructure of TiAl matrix composites with extraordinary strength and plasticity at ambient temperature. 展开更多
关键词 Ti_(2)AlC/TiAl composite Heterogeneous lamellar microstructure Micropillar compression interface-mediated deformation Strength-plasticity synergy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部