A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading i...A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading is studied.The effects of strength and thickness of the coating materials on the debond stress,debond rate as well as debond length are simulated.展开更多
With the increasingly use of FRC (fiber-reinforced composite) in urban lifelines, me-chanical properties investigation is very important for disaster resistance, especiallythe investigation of fatigue properties. Base...With the increasingly use of FRC (fiber-reinforced composite) in urban lifelines, me-chanical properties investigation is very important for disaster resistance, especiallythe investigation of fatigue properties. Based on the shear-lag model, an usual com-posite model under cyclic loading is established. According to the Paris formula, therelationship between interfacial fatigue parameters and the number of cycles is ob-tained under the cyclic loading. Interfocial fatigue properties of this model and thegrowth of the interfacial fatigue crack are analyzed. And the Poisson ratio is consid-ered also.展开更多
The mechanisms of interfacial debonding of particle reinforcedrheological materials are studied. Based on an energy criterion, asimple formula of local critical stress for interfacial debonding isderived and expressed...The mechanisms of interfacial debonding of particle reinforcedrheological materials are studied. Based on an energy criterion, asimple formula of local critical stress for interfacial debonding isderived and expressed in terms of the interfacial energy. Theparticle size effect on interface debond- ing can then be analyzedeasily owing to the fact that critical stress is inverselyproportional to the square root of particle radius. By takingPP/CaCO_3 system as an example, the present energy criterion iscompared with the mechanical debonding criterion, and it is foundthat under the condition that bond strength is equal to matrixstrength and particle radius not over 0.2μm, the mechanicaldebonding cri- terion can be automatically satisfied if the energycirterion is satisfied.展开更多
This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites(SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the g...This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites(SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the generalized self-consistent method, a representative volume element(RVE) model is established, and the cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase thickness of 0.3 μm and an interphase elastic modulus of about 502 MPa are optimal to restrain the initiation of the interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface,which agrees well with results by scanning electron microscope(SEM).展开更多
This paper derives the complementary energy functional based on the Voronoi element of particle-reinforced composites containing interphases to compute the interfacial debonding and thermal stress.When calculating int...This paper derives the complementary energy functional based on the Voronoi element of particle-reinforced composites containing interphases to compute the interfacial debonding and thermal stress.When calculating interfacial debonding stress,it is assumed that the surface force is zero at the interface where debonding occurs,and a new modified complementary energy functional is derived with this boundary condition.When considering the thermal stress due to temperature change,the thermal strain is introduced into the complementary energy functional,and the thermal stress is then calculated.According to the derived formula,a Fortran program named Voronoi cell finite element model(VCFEM)is written.The interfacial debonding and thermal stress is calculated using both VCFEM and the finite element software MARC,and the calculation results are compared.It shows that the calculation results of the VCFEM are roughly comparable to those of the MARC,verifying the effectiveness of the VCFEM.展开更多
In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one...In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.展开更多
基金The subject supported by the National Natural Science Foundation of China(No.59778034)Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOEChina and The Hong Kong Polytechnic University(G-S737)
文摘A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading is studied.The effects of strength and thickness of the coating materials on the debond stress,debond rate as well as debond length are simulated.
基金This work was supported by the National Natural Science Foundation of China(No.59778034)the Science Foundation of Hebei province(No.03276901)
文摘With the increasingly use of FRC (fiber-reinforced composite) in urban lifelines, me-chanical properties investigation is very important for disaster resistance, especiallythe investigation of fatigue properties. Based on the shear-lag model, an usual com-posite model under cyclic loading is established. According to the Paris formula, therelationship between interfacial fatigue parameters and the number of cycles is ob-tained under the cyclic loading. Interfocial fatigue properties of this model and thegrowth of the interfacial fatigue crack are analyzed. And the Poisson ratio is consid-ered also.
基金the Nationai Natural Science Foundation of China(19632030 and 19872007)Natural Science Foundation of Jiangsu Province
文摘The mechanisms of interfacial debonding of particle reinforcedrheological materials are studied. Based on an energy criterion, asimple formula of local critical stress for interfacial debonding isderived and expressed in terms of the interfacial energy. Theparticle size effect on interface debond- ing can then be analyzedeasily owing to the fact that critical stress is inverselyproportional to the square root of particle radius. By takingPP/CaCO_3 system as an example, the present energy criterion iscompared with the mechanical debonding criterion, and it is foundthat under the condition that bond strength is equal to matrixstrength and particle radius not over 0.2μm, the mechanicaldebonding cri- terion can be automatically satisfied if the energycirterion is satisfied.
基金the National Natural Science Foundation of China(No.51375223)Open Research Fund by Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic Products(No.RRME-KF1611)Scientific Research Foundation for Advanced Talents(No.XZ1517)
文摘This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites(SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the generalized self-consistent method, a representative volume element(RVE) model is established, and the cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase thickness of 0.3 μm and an interphase elastic modulus of about 502 MPa are optimal to restrain the initiation of the interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface,which agrees well with results by scanning electron microscope(SEM).
基金Funding was provided by The national Natural Science Foundation of China (Grant No.12062007).
文摘This paper derives the complementary energy functional based on the Voronoi element of particle-reinforced composites containing interphases to compute the interfacial debonding and thermal stress.When calculating interfacial debonding stress,it is assumed that the surface force is zero at the interface where debonding occurs,and a new modified complementary energy functional is derived with this boundary condition.When considering the thermal stress due to temperature change,the thermal strain is introduced into the complementary energy functional,and the thermal stress is then calculated.According to the derived formula,a Fortran program named Voronoi cell finite element model(VCFEM)is written.The interfacial debonding and thermal stress is calculated using both VCFEM and the finite element software MARC,and the calculation results are compared.It shows that the calculation results of the VCFEM are roughly comparable to those of the MARC,verifying the effectiveness of the VCFEM.
基金supported by the Scheme of Science and Technology of Guangdong Province,China(2005B32801002)
文摘In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.