The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically r...The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically robust and single-ion-conducting interfacial layer, fulfilled by the strategic integration of flexible cellulose acetate(CA) matrix with rigid graphene oxide(GO) and Li F fillers(termed the CGL layer), is rationally devised to serve as a stabilizer for dendrite-free lithium(Li) metal batteries. The GCL film exhibits favorable mechanical properties with high modulus and flexibility that help to relieve interface fluctuations. More crucially, the electron-donating carbonyl groups(C=O) enriched in GCL foster a strengthened correlation with Li^(+), which availably aids the Li^(+)desolvation process and expedites facile Li^(+)mobility, yielding exceptional Li^(+) transference number of 0.87. Such single-ion conductive properties regulate rapid and uniform interfacial transport kinetics, mitigating the growth of Li dendrites and the decomposition of electrolytes. Consequently, stable Li anode with prolonged cycle stabilities and flat deposition morphologies are realized. The Li||LiFePO_(4) full cells with CGL protective layer render an outstanding cycling capability of 500 cycles at 3 C, and an ultrahigh capacity retention of 99.99% for over 220 cycles even under harsh conditions. This work affords valuable insights into the interfacial regulation for achieving high-performance LMBs.展开更多
Aqueous rechargeable zinc ion batteries are regarded as a competitive alternative to lithium-ion batteries because of their distinct advantages of high security,high energy density,low cost,and environmental friendlin...Aqueous rechargeable zinc ion batteries are regarded as a competitive alternative to lithium-ion batteries because of their distinct advantages of high security,high energy density,low cost,and environmental friendliness.However,deep-seated problems including Zn dendrite and adverse side reactions severely impede the practical application.In this work,we proposed a freestanding Zn-electrolyte interfacial layer composed of multicapsular carbon fibers(MCFs)to regulate the plating/stripping behavior of Zn anodes.The versatile MCFs protective layer can uniformize the electric field and Zn^(2+)flux,meanwhile,reduce the deposition overpotentials,leading to high-quality and rapid Zn deposition kinetics.Furthermore,the bottom-up and uniform deposition of Zn on the Zn-MCFs interface endows long-term and high-capacity plating.Accordingly,the Zn@MCFs symmetric batteries can keep working up to 1500 h with 5 mAh cm^(−2).The feasibility of the MCFs interfacial layer is also convinced in Zn@MCFs||MnO_(2) batteries.Remarkably,the Zn@MCFs||α-MnO_(2)batteries deliver a high specific capacity of 236.1 mAh g^(−1)at 1 A g^(−1)with excellent stability,and maintain an exhilarating energy density of 154.3 Wh kg^(−1) at 33%depth of discharge in pouch batteries.展开更多
Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (...Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side.展开更多
Fe-Cr-Ni/Al-Si-Cu-Ni-Mg composite was taken as the experimental material. The chemical composition of interfacial layer was tested. The generation mechanism and influence of interfacial layer on the composite were ana...Fe-Cr-Ni/Al-Si-Cu-Ni-Mg composite was taken as the experimental material. The chemical composition of interfacial layer was tested. The generation mechanism and influence of interfacial layer on the composite were analyzed. The results indicated that the generation of interfacial layer is sensitive to temperature. Interfacial layer will generate rapidly when temperature reaches 500 ℃ or above. The interfacial layer is mainly composed of Al, Si, Cu, Fe, and Cr, element Ni distributes at the outward of the interfacial layer for the precipitate of Ni later than Si and Cu, and there is almost no diffusion of Ni during the solution treatment. During heat treatment process, unequal quantity changing of metal atom results in disperse or concentrated vacancies or holes near the matrix. The existence of interfacial layer will induce a decrease of compression strength and plasticity at room temperature and an increase of strength at higher temperature comparing with composite without interfacial layer.展开更多
We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. T...We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. The GeOx interfacial layer is formed in oxidation reaction by oxygen passing through the Al2O3 OBL, in which theAl2O3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeOx interfacial layer would dramatically decrease as the thickness of Al2O3 OBL increases, which is beneficial to achieving an ultrathin GeOx interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeOx interfacial layer has little influence on the passivation effect of the Al2O3/Ge interface. Ge (100) p-channel metal- oxide-semiconductor field-effect transistors (pMOSFETs) using the Al2O3/GeOx/Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (Ionloft) ratio of above 1 104, a subthreshold slope of - 120 mV/dec, and a peak hole mobility of 265 cm2/V.s are achieved.展开更多
There have already been several interface models for the analyses of thin interfacial layers in bonded materials. To distinguish their corresponding advantages or limitations, a comparative study is carried out, and a...There have already been several interface models for the analyses of thin interfacial layers in bonded materials. To distinguish their corresponding advantages or limitations, a comparative study is carried out, and a new constitutive-based interface model is proposed. Through numerical examinations, the limitations of typical models are clarified. It is found that the new interface model is an efficient and accurate model, by which both the traction and the displacement jumps across the modelled interface with the thickness of zero are allowed, and the stresses within the interracial layer can also be analyzed.展开更多
The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial impla...The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants.Layer-by-layer fabrication strategies,such as 3D printing,have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties.However,the dynamic and circulating physiological environments,such as mass transportation or cell migration,usually distort the pre-confined biological properties in the layered implants,leading to undistinguished spatial variations and subsequently inefficient regenerations.This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair.The calcified interfacial layer consisting of compact polycaprolactone(PCL),nano-hydroxyapatite,and tasquinimod(TA)can physically and biologically separate the cartilage layer(TA-mixed,chondrocytes-load gelatin methacrylate)from the subchondral bond layer(porous PCL).This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration,successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA.The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination,micro-computed tomography(micro-CT),and histological and immunohistochemical analyses based on an in vivo rat model.Moreover,gene and protein expression studies identified a key role of Caveolin(CAV-1)in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.展开更多
Self-doping cathode interfacial layers(CILs) with both favorable electron injection and transport characteristics meet the key requirement for realizing high-performance optoelectronic devices with simplified structur...Self-doping cathode interfacial layers(CILs) with both favorable electron injection and transport characteristics meet the key requirement for realizing high-performance optoelectronic devices with simplified structures. Herein, four different polypyridinium salts with tunable backbones, side chains and counterions are elaborately designed to afford them desirable film-forming property, polarity, structural rigidity and self-doping feature. All-solution-processed red quantum dot light-emitting diodes(QLEDs) employing them as bifunctional CILs render remarkably improved device performances in contrast to the typical CIL material of poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN).The maximum external quantum efficiency of 2.74% achieved in this work represents one of the best values among the all-solution-processed QLEDs with individual organic CILs.展开更多
Lithium metal anode is considered the alternative to graphite anode due to its ultra-high theoretical capacity of 3860 mAh·g^(-1).However,serious Li dendrite growth and drastic electrolyte side reactions restrain...Lithium metal anode is considered the alternative to graphite anode due to its ultra-high theoretical capacity of 3860 mAh·g^(-1).However,serious Li dendrite growth and drastic electrolyte side reactions restrain the commercial application of Li metal anode.In this work,a Li_(3)Bi/LiF interfacial layer is constructed on the surface of the Li metal anode by a spontaneous substitution reaction.The composite interfacial layer possesses excellent ionic conductivity,high mechanical strength,and great electrolyte wettability,which ensures fast Li-ion transfer and uniform Li deposition of the Li_(3)Bi/LiF@Li anode.Impressively,the Li_3Bi/LiF@Li symmetric cell provides a cycle life of more than 400 h with only 73 mV voltage polarization at 10 mA·cm^(-2).By pairing with commercial NCM622 cathode,the Li_(3)Bi/LiF@Li full cell exhibits a long cycle at a rate of 2 C.展开更多
Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on...Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn m...Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.展开更多
Heterojunction is regarded as a crucial step toward realizing high-performance devices,particularly,forming gradient energy band between heterojunctions benefits self-powered photodetectors.Therefore,in this paper,the...Heterojunction is regarded as a crucial step toward realizing high-performance devices,particularly,forming gradient energy band between heterojunctions benefits self-powered photodetectors.Therefore,in this paper,the synthesis of CsPbI3 nanorods(NRs)and its application as the interfacial layer in high-performance,all-solution-processed self-powered photodetectors are presented.For the bilayer photodetector ITO/ZnO(100 nm)/PbS-TBAI(150 nm)/Au,a responsivity of 3.6 A/W with a specific detectivity of 9.8×10^(12)Jones was obtained under 0.1 mW/cm^(2)white light illumination at zero bias(i.e.in self-powered mode).Meanwhile,the photocurrent was enhanced to an On/Off current ratio of 105 at zero bias with an open circuit voltage of 0.53 V for trilayer photodetector ITO/ZnO(100 nm)/PbSTBAI(150 nm)/CsPbI3(250 nm)/Au,in which the CsPbI3 NRs layer works as the interfacial layer.As a result,a specific detectivity of 4.5×10^(13)Jones with a responsivity of 11.12 A/W was obtained under0.1 mW/cm^(2) white light illumination,as well as the rising/decaying time of 0.57 s/0.41 s with excellent stability and reproducibility upto four weeks in air.The enhanced-performance is ascribed to the mismatch bandgap between PbS-TBAI/CsPbI_(3)interface,which can suppress the carrier recombination and provide efficient transport passages for charge carriers.Thus,it provides a feasible and efficient method for high-performance photodetectors.展开更多
The flexibility of organic photovoltaics(OPVs)has attracted worldwide attention in recent years.To realize the bending-stability of OPVs,it is necessary to put forward the bending-stability of interfacial layer.A nove...The flexibility of organic photovoltaics(OPVs)has attracted worldwide attention in recent years.To realize the bending-stability of OPVs,it is necessary to put forward the bending-stability of interfacial layer.A novel bendable composite is explored and successfully applied as an electron transport layer(ETL)for fully-flexible OPVs.We incorporated poly(vinylpyrrolidone)(PVP)into conjugated electrolytes(CPE)to composite a bendable ETL for high-performance OPVs devices.Fortunately,the devices based on PVP-modified CPE exhibited better device performances and more excellent mechanical properties of bendability.The fullerene-free OPVs based on PM6:IT-4 F with CPE@PVP as ETLs yield the best power conversion efficiency(PCE)of 13.42%.Moreover,a satisfying efficiency of 12.59%has been obtained for the fully-flexible OPVs.As far as we know,this is one of the highest PCE for fully-flexible OPV based PM6:IT-4 F system.More importantly,the flexible OPVs devices can retain more than 80%of its initial efficiency after 5000 bending cycles.Furthermore,among various curvature radii,the mechanical properties of the device based on CPE@PVP are superior to those of the device based on bare CPE as ETL.These findings indicate that the functional flexibility of CPE as a cathode interfacial layer is an effective strategy to fabricate high-performance flexible devices in the near future.展开更多
A light-emitting organic solar cell(LE-OSC)with electroluminescence(EL)and photovoltaic(PV)properties is successfully fabricated by connecting the EL and PV units using a MoO_(3):Al co-evaporation interfacial layer,wh...A light-emitting organic solar cell(LE-OSC)with electroluminescence(EL)and photovoltaic(PV)properties is successfully fabricated by connecting the EL and PV units using a MoO_(3):Al co-evaporation interfacial layer,which has suitable work function and good transmittance.PV and EL units are fabricated based on poly(3-hexylthiophene)(P3HT)-indene-C60 bisadduct(IC60BA)blends,and 4,4′-bis(N-carbazolyl)biphenyl-factris(2-phenylpyridine)iridium(Ir(ppy)3),respectively.The work function and the transmittance of the MoO_(3):Al co-evaporation are measured and adjusted by the ultraviolet photoelectron spectroscopy and the optical spectrophotometer to obtain the better bi-functional device performance.The forward-and reverse-biased current density-voltage characteristics in dark and under illumination are evaluated to better understand the operational mechanism of the LE-OSCs.A maximum luminance of 1550 cd/m^(2)under forward bias and a power conversion efficiency of 0.24%under illumination(100 mW/cm^(2))are achieved in optimized LE-OSCs.The proposed device structure is expected to provide valuable information in the film conditions for understanding the polymer blends internal conditions and meliorating the film qualities.展开更多
The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer ...The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL).The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J_(g)-V_(g))) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer.The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS).The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties.These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer,and an enhanced blocking role against inter-diffusion of the elements during annealing by the NdAlON IPL.展开更多
Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electr...Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed.展开更多
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological...Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.展开更多
Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-me...Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.展开更多
Organic semiconductor single crystals(OSSCs) have shown their promising potential in high-performance organic field-effect transistors(OFETs). The interfacial dielectric layers are critical in these OFETs as they not ...Organic semiconductor single crystals(OSSCs) have shown their promising potential in high-performance organic field-effect transistors(OFETs). The interfacial dielectric layers are critical in these OFETs as they not only govern the key semiconductor/dielectric interface quality but also determine the growth of OSSCs by their wetting properties. However, reported interfacial dielectric layers either need rigorous preparation processes, rely on certain surface chemistry reactions, or exhibit poor solvent resistance, which limits their applications in low-cost, large-area, monolithic fabrication of OSSC-based OFETs. In this work, polyethylene(PE) thin films and lamellar single crystals are utilized as the interfacial dielectric layers, providing solvent resistive but wettable surfaces that facilitate the crystallization of 6,13-bis(tri-isopropylsilylethynyl)pentacene(TIPS-PEN) and 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene(TIPS-TAP). As evidenced by the presence of ambipolar behavior in TIPS-PEN single crystals and the high electron mobility(2.3 ± 0.34 cm^(2)V^(-1)s^(-1)) in TIPS-TAP single crystals, a general improvement on electron transport with PE interfacial dielectric layers is revealed, which likely associates with the chemically inertness of the saturated C-H bonds. With the advantages in both processing and device operation, the PE interfacial dielectric layer potentially offers a monolithic way for the enhancement of electron transport in solution-processed OSSC-based OFETs.展开更多
基金National Natural Science Foundation of China (No. 22209014)5.5 Engineering Research & Innovation Team Project of Beijing Forestry University (No.BLRC 2023B05)。
文摘The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically robust and single-ion-conducting interfacial layer, fulfilled by the strategic integration of flexible cellulose acetate(CA) matrix with rigid graphene oxide(GO) and Li F fillers(termed the CGL layer), is rationally devised to serve as a stabilizer for dendrite-free lithium(Li) metal batteries. The GCL film exhibits favorable mechanical properties with high modulus and flexibility that help to relieve interface fluctuations. More crucially, the electron-donating carbonyl groups(C=O) enriched in GCL foster a strengthened correlation with Li^(+), which availably aids the Li^(+)desolvation process and expedites facile Li^(+)mobility, yielding exceptional Li^(+) transference number of 0.87. Such single-ion conductive properties regulate rapid and uniform interfacial transport kinetics, mitigating the growth of Li dendrites and the decomposition of electrolytes. Consequently, stable Li anode with prolonged cycle stabilities and flat deposition morphologies are realized. The Li||LiFePO_(4) full cells with CGL protective layer render an outstanding cycling capability of 500 cycles at 3 C, and an ultrahigh capacity retention of 99.99% for over 220 cycles even under harsh conditions. This work affords valuable insights into the interfacial regulation for achieving high-performance LMBs.
基金supported by the National Natural Science Foundation of China(51901206)“the Fundamental Research Funds for the Central Universities”(2021QNA4003).
文摘Aqueous rechargeable zinc ion batteries are regarded as a competitive alternative to lithium-ion batteries because of their distinct advantages of high security,high energy density,low cost,and environmental friendliness.However,deep-seated problems including Zn dendrite and adverse side reactions severely impede the practical application.In this work,we proposed a freestanding Zn-electrolyte interfacial layer composed of multicapsular carbon fibers(MCFs)to regulate the plating/stripping behavior of Zn anodes.The versatile MCFs protective layer can uniformize the electric field and Zn^(2+)flux,meanwhile,reduce the deposition overpotentials,leading to high-quality and rapid Zn deposition kinetics.Furthermore,the bottom-up and uniform deposition of Zn on the Zn-MCFs interface endows long-term and high-capacity plating.Accordingly,the Zn@MCFs symmetric batteries can keep working up to 1500 h with 5 mAh cm^(−2).The feasibility of the MCFs interfacial layer is also convinced in Zn@MCFs||MnO_(2) batteries.Remarkably,the Zn@MCFs||α-MnO_(2)batteries deliver a high specific capacity of 236.1 mAh g^(−1)at 1 A g^(−1)with excellent stability,and maintain an exhilarating energy density of 154.3 Wh kg^(−1) at 33%depth of discharge in pouch batteries.
基金Supported by National Natural Science Foundation of China (50874033).
文摘Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side.
基金Funded by the Program of International S&T Cooperation(No.2013DFA51230)the Opening Subject Fund of Ningbo University(No.zj1226)
文摘Fe-Cr-Ni/Al-Si-Cu-Ni-Mg composite was taken as the experimental material. The chemical composition of interfacial layer was tested. The generation mechanism and influence of interfacial layer on the composite were analyzed. The results indicated that the generation of interfacial layer is sensitive to temperature. Interfacial layer will generate rapidly when temperature reaches 500 ℃ or above. The interfacial layer is mainly composed of Al, Si, Cu, Fe, and Cr, element Ni distributes at the outward of the interfacial layer for the precipitate of Ni later than Si and Cu, and there is almost no diffusion of Ni during the solution treatment. During heat treatment process, unequal quantity changing of metal atom results in disperse or concentrated vacancies or holes near the matrix. The existence of interfacial layer will induce a decrease of compression strength and plasticity at room temperature and an increase of strength at higher temperature comparing with composite without interfacial layer.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00605 and 2011CBA00607)the National Natural Science Foundation of China(Grant No.61204103)the National Science & Technology Major Project of China(Grant No.2011ZX02708-003)
文摘We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. The GeOx interfacial layer is formed in oxidation reaction by oxygen passing through the Al2O3 OBL, in which theAl2O3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeOx interfacial layer would dramatically decrease as the thickness of Al2O3 OBL increases, which is beneficial to achieving an ultrathin GeOx interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeOx interfacial layer has little influence on the passivation effect of the Al2O3/Ge interface. Ge (100) p-channel metal- oxide-semiconductor field-effect transistors (pMOSFETs) using the Al2O3/GeOx/Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (Ionloft) ratio of above 1 104, a subthreshold slope of - 120 mV/dec, and a peak hole mobility of 265 cm2/V.s are achieved.
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘There have already been several interface models for the analyses of thin interfacial layers in bonded materials. To distinguish their corresponding advantages or limitations, a comparative study is carried out, and a new constitutive-based interface model is proposed. Through numerical examinations, the limitations of typical models are clarified. It is found that the new interface model is an efficient and accurate model, by which both the traction and the displacement jumps across the modelled interface with the thickness of zero are allowed, and the stresses within the interracial layer can also be analyzed.
基金supported by the National Natural Science Foundation of China(Grant No.82202690)the Shanghai Pujiang Program(2022PJD051)+1 种基金the China Postdoctoral Science Foundation(2022M712121)the Basic Science Program of Shanghai Sixth People’s Hospital(Grant No.ynqn202203).
文摘The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants.Layer-by-layer fabrication strategies,such as 3D printing,have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties.However,the dynamic and circulating physiological environments,such as mass transportation or cell migration,usually distort the pre-confined biological properties in the layered implants,leading to undistinguished spatial variations and subsequently inefficient regenerations.This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair.The calcified interfacial layer consisting of compact polycaprolactone(PCL),nano-hydroxyapatite,and tasquinimod(TA)can physically and biologically separate the cartilage layer(TA-mixed,chondrocytes-load gelatin methacrylate)from the subchondral bond layer(porous PCL).This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration,successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA.The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination,micro-computed tomography(micro-CT),and histological and immunohistochemical analyses based on an in vivo rat model.Moreover,gene and protein expression studies identified a key role of Caveolin(CAV-1)in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.
基金the financial support from the National Natural Science Foundation of China (Nos. 51803124and 62175189)Shenzhen Science and Technology Program (Nos.KQTD20170330110107046 and JCYJ20170818143831242)+2 种基金the Instrumental Analysis Center of Shenzhen University for Analytical Supportthe funding support from the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2019WNLOKF015)the Open Fund of Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province,Shantou University (No.KLPAOSM202003)。
文摘Self-doping cathode interfacial layers(CILs) with both favorable electron injection and transport characteristics meet the key requirement for realizing high-performance optoelectronic devices with simplified structures. Herein, four different polypyridinium salts with tunable backbones, side chains and counterions are elaborately designed to afford them desirable film-forming property, polarity, structural rigidity and self-doping feature. All-solution-processed red quantum dot light-emitting diodes(QLEDs) employing them as bifunctional CILs render remarkably improved device performances in contrast to the typical CIL material of poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN).The maximum external quantum efficiency of 2.74% achieved in this work represents one of the best values among the all-solution-processed QLEDs with individual organic CILs.
基金financially supported by the National Natural Science Foundation of China (Nos.52204306 and52204319)the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (No.2023JJ10044)+4 种基金the Scientific Research Fund of Hunan Provincial Education Department (Nos.21C0192 and 22A0211)the Science and Technology Planning Project of Hunan Province (No.2019RS2034)Hunan High-tech Industry Science and Technology Innovation Leading Plan (No.2020GK2072)Changsha City Fund for Distinguished and Innovative Young Scholars (No.KQ1707014)the Postgraduate Scientific Research Innovation Project of Changsha University of Science and Technology (No.CXCLY2022147)。
文摘Lithium metal anode is considered the alternative to graphite anode due to its ultra-high theoretical capacity of 3860 mAh·g^(-1).However,serious Li dendrite growth and drastic electrolyte side reactions restrain the commercial application of Li metal anode.In this work,a Li_(3)Bi/LiF interfacial layer is constructed on the surface of the Li metal anode by a spontaneous substitution reaction.The composite interfacial layer possesses excellent ionic conductivity,high mechanical strength,and great electrolyte wettability,which ensures fast Li-ion transfer and uniform Li deposition of the Li_(3)Bi/LiF@Li anode.Impressively,the Li_3Bi/LiF@Li symmetric cell provides a cycle life of more than 400 h with only 73 mV voltage polarization at 10 mA·cm^(-2).By pairing with commercial NCM622 cathode,the Li_(3)Bi/LiF@Li full cell exhibits a long cycle at a rate of 2 C.
基金supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017012, Human Resource Development Program for Industrial Innovation)the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS2024-00411892)。
文摘Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金supported by the National Natural Science Foundation(51772115)the National Key Research and Development Program of China(2018YFE0206900)the Hubei Provincial Natural Science Foundation(2019CFA002)。
文摘Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.
基金partially funded by the project of State Key Laboratory of Transducer Technology(SKT1404)the project of the Key Laboratory of Photoelectronic Imaging Technology and System(2017OEIOF02)Beijing Institute of Technology,Ministry of Education of Chinathe project of the Key R&D projects of the Ministry of Science and Technology(SQ2019YFB220038)。
文摘Heterojunction is regarded as a crucial step toward realizing high-performance devices,particularly,forming gradient energy band between heterojunctions benefits self-powered photodetectors.Therefore,in this paper,the synthesis of CsPbI3 nanorods(NRs)and its application as the interfacial layer in high-performance,all-solution-processed self-powered photodetectors are presented.For the bilayer photodetector ITO/ZnO(100 nm)/PbS-TBAI(150 nm)/Au,a responsivity of 3.6 A/W with a specific detectivity of 9.8×10^(12)Jones was obtained under 0.1 mW/cm^(2)white light illumination at zero bias(i.e.in self-powered mode).Meanwhile,the photocurrent was enhanced to an On/Off current ratio of 105 at zero bias with an open circuit voltage of 0.53 V for trilayer photodetector ITO/ZnO(100 nm)/PbSTBAI(150 nm)/CsPbI3(250 nm)/Au,in which the CsPbI3 NRs layer works as the interfacial layer.As a result,a specific detectivity of 4.5×10^(13)Jones with a responsivity of 11.12 A/W was obtained under0.1 mW/cm^(2) white light illumination,as well as the rising/decaying time of 0.57 s/0.41 s with excellent stability and reproducibility upto four weeks in air.The enhanced-performance is ascribed to the mismatch bandgap between PbS-TBAI/CsPbI_(3)interface,which can suppress the carrier recombination and provide efficient transport passages for charge carriers.Thus,it provides a feasible and efficient method for high-performance photodetectors.
基金financial support from the National Natural Science Foundation of China(Nos.51833004,22005131,51973032,21905043 and U20A20128)。
文摘The flexibility of organic photovoltaics(OPVs)has attracted worldwide attention in recent years.To realize the bending-stability of OPVs,it is necessary to put forward the bending-stability of interfacial layer.A novel bendable composite is explored and successfully applied as an electron transport layer(ETL)for fully-flexible OPVs.We incorporated poly(vinylpyrrolidone)(PVP)into conjugated electrolytes(CPE)to composite a bendable ETL for high-performance OPVs devices.Fortunately,the devices based on PVP-modified CPE exhibited better device performances and more excellent mechanical properties of bendability.The fullerene-free OPVs based on PM6:IT-4 F with CPE@PVP as ETLs yield the best power conversion efficiency(PCE)of 13.42%.Moreover,a satisfying efficiency of 12.59%has been obtained for the fully-flexible OPVs.As far as we know,this is one of the highest PCE for fully-flexible OPV based PM6:IT-4 F system.More importantly,the flexible OPVs devices can retain more than 80%of its initial efficiency after 5000 bending cycles.Furthermore,among various curvature radii,the mechanical properties of the device based on CPE@PVP are superior to those of the device based on bare CPE as ETL.These findings indicate that the functional flexibility of CPE as a cathode interfacial layer is an effective strategy to fabricate high-performance flexible devices in the near future.
基金the National Natural Science Foundation of China(Grant No.61674109)Jiangsu Province College Student Innovation and Entrepreneurship TrainingProgram(No.202010285087Y)the Natural Science Foundation of theJiangsu Higher Education Institutions of China(No.19KJD510006).
文摘A light-emitting organic solar cell(LE-OSC)with electroluminescence(EL)and photovoltaic(PV)properties is successfully fabricated by connecting the EL and PV units using a MoO_(3):Al co-evaporation interfacial layer,which has suitable work function and good transmittance.PV and EL units are fabricated based on poly(3-hexylthiophene)(P3HT)-indene-C60 bisadduct(IC60BA)blends,and 4,4′-bis(N-carbazolyl)biphenyl-factris(2-phenylpyridine)iridium(Ir(ppy)3),respectively.The work function and the transmittance of the MoO_(3):Al co-evaporation are measured and adjusted by the ultraviolet photoelectron spectroscopy and the optical spectrophotometer to obtain the better bi-functional device performance.The forward-and reverse-biased current density-voltage characteristics in dark and under illumination are evaluated to better understand the operational mechanism of the LE-OSCs.A maximum luminance of 1550 cd/m^(2)under forward bias and a power conversion efficiency of 0.24%under illumination(100 mW/cm^(2))are achieved in optimized LE-OSCs.The proposed device structure is expected to provide valuable information in the film conditions for understanding the polymer blends internal conditions and meliorating the film qualities.
基金Funded by the National Natural Science Foundation of China (No. 61704113)the Higher Vocational Brand Mayer in Guangdong Province (No.610103)the Educational Science Planning Project of Guangdong Province (Higher Education Special)。
文摘The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL).The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J_(g)-V_(g))) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer.The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS).The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties.These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer,and an enhanced blocking role against inter-diffusion of the elements during annealing by the NdAlON IPL.
基金supported by the China Petrochemical Corporation(222260).
文摘Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+2 种基金the Young Cross Team Project of CAS(JCTD-2021-14)CAS-CSIRO joint project of Chinese Academy of Sciences(121E32KYSB20190021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences(CAS)
文摘Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.
基金supported by the National Natural Science Foundation of China (No. 22005216 and 52172241)the General Research Fund of Hong Kong (No. CityU 11308321)Tianjin Research Innovation Project for Postgraduate Students (No.2022BKY130)
文摘Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.
基金supported by the National Key Research and Development Program of China (Nos.2019YFE0116700,2019YFA0705900) funded by MOSTNational Natural Science Foundation of China (Nos.51873182, 52103231)+2 种基金Zhejiang Province Science and Technology Plan (No.2021C04012) funded by Zhejiang Provincial Department of Science and TechnologyShanxiZheda Institute of Advanced Materials and Chemical Engineering(No.2021SZ-FR003)the support by the Fundamental Research Funds for the Central Universities (No.226-2023-00113)。
文摘Organic semiconductor single crystals(OSSCs) have shown their promising potential in high-performance organic field-effect transistors(OFETs). The interfacial dielectric layers are critical in these OFETs as they not only govern the key semiconductor/dielectric interface quality but also determine the growth of OSSCs by their wetting properties. However, reported interfacial dielectric layers either need rigorous preparation processes, rely on certain surface chemistry reactions, or exhibit poor solvent resistance, which limits their applications in low-cost, large-area, monolithic fabrication of OSSC-based OFETs. In this work, polyethylene(PE) thin films and lamellar single crystals are utilized as the interfacial dielectric layers, providing solvent resistive but wettable surfaces that facilitate the crystallization of 6,13-bis(tri-isopropylsilylethynyl)pentacene(TIPS-PEN) and 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene(TIPS-TAP). As evidenced by the presence of ambipolar behavior in TIPS-PEN single crystals and the high electron mobility(2.3 ± 0.34 cm^(2)V^(-1)s^(-1)) in TIPS-TAP single crystals, a general improvement on electron transport with PE interfacial dielectric layers is revealed, which likely associates with the chemically inertness of the saturated C-H bonds. With the advantages in both processing and device operation, the PE interfacial dielectric layer potentially offers a monolithic way for the enhancement of electron transport in solution-processed OSSC-based OFETs.