The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potent...The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potentials were studied and compared at a water/cyclohexane model interface using a droplet tensiometer (Tracker Teclis, Longessaigne, France). The progressive interfacial adsorption of the NPs in the aqueous phase was monitored by tensiometry. The model interface was maintained and observed in a drop tensiometer, analyzed via axisymmetric drop shape analysis (ADSA), to determine the interfacial properties. Given the direct relationship between the stability of Pickering emulsions (emulsions stabilized by solid nanoparticles) and the interfacial properties of these layers, different nanoparticle systems were compared. Specifically, Eudragit NPs of different sizes were examined. Moreover, the reduction of the Zeta potential with PEG-6000 induces partial aggregation of the NPs (referred to as NP flocs), significantly impacting the stability of the interfacial layer. Dynamic surface tension measurements indicate a significant decrease in interfacial tension with Eudragit® nanoparticles (NPs). This reduction correlates with the size of the NPs, highlighting that this parameter does not operate in isolation. Other factors, such as the contact angle and wettability of the nanoparticles, also play a critical role. Notably, larger NPs further diminished the interfacial tension. This study enhances our understanding of the stability of Pickering emulsions stabilized by Eudragit® L100 polymeric nanoparticles.展开更多
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri...Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
Two-dimensional(2D) transition metal carbides, carbonitrides and nitrides, known as MXenes, are emerging quickly at the frontiers of 2D materials world. Their exotic properties such as the highest electrical conductiv...Two-dimensional(2D) transition metal carbides, carbonitrides and nitrides, known as MXenes, are emerging quickly at the frontiers of 2D materials world. Their exotic properties such as the highest electrical conductivity among all solution-processed 2 D materials, the best electromagnetic interference shielding performance outperforming that of copper or aluminum at a nanoscale thickness, as well as the highest volumetric capacitance for pseudocapacitors, have been attracting extensive fundamental research and applications. Their unique surface chemistries, that is, hydrophilic groups terminated on the surface of MXenes after etching and delamination, enable plenty of opportunities for assembling into MXene building blocks. Particularly, assembling at liquid–liquid, liquid–solid, liquid–air, and solid–solid interfaces allows the efficient fabrication of various structures, including MXene surfactants, MXene heterostructures, MXene transparent films. Interfacial assembly of MXenes is of significance in unveiling more versatilities of MXenes as well as impacts on novel MXene-based architectures, based on which enhanced performance of devices is achieved. As such, this review focuses on the interfacial assembly of MXenes, explaining mechanisms behind various assembling and providing classical examples for corresponding interfacial assembling techniques. Applications of these as-assembled architectures are also discussed in brief. We believe this review may shed light on the interfacial chemistry of MXenes, thus guiding more efficient fabrication of MXene-based functional films/coatings/electrodes/devices.展开更多
The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,inter...The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,interfacial shear viscosity and Zeta potential of the oil/water system.The result showed that both NaOH and Na_2CO_3 could react with acid substances in the crude oil to produce interfacially active components,which are adsorbed on the interfaces between the aqueous phase and oil phase, resulting in a decrease of the interfacial tension,negatively charging the surface of oil droplets,but making little change in the interfacial shear viscosity.For the same ionic strength of NaOH and Na_2CO_3, the interfacial tension of NaOH solution-crude oil system is lower,but the interfacial shear viscosity of NaOH solution-crude oil system is higher,than that of Na_2CO_3 solution-crude oil system.The negative value of the Zeta potential on the surface of the oil droplets is large.Accordingly,the O/W emulsion of NaOH solution-crude oil system is more stable than that of Na_2CO_3 solution-crude oil system.展开更多
There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock...There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock surfaces.This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface.Molecular dynamics simulation was used to determine the interfacial energy(strength) and adsorption of Fe2 O3 and Fe3 O4 nanofluids infused in reservoir sandstones.Fourier transform infrared spectroscopy and X-ray photon spectroscopy(XPS) were used to monitor interaction of silicate species with Fe2 O3 and Fe3 O4.The spectral changes show the variation of dominating silicate anions in the solution.Also,the XPS peaks for Si,C and Fe at 190,285 and 700 eV,respectively,are less distinct in the spectra of sandstone aged in the Fe3 O4 nanofluid,suggesting the intense adsorption of the Fe3 O4 with the crude oil.The measured IFT for brine/oil,Fe2 O3/oil and Fe3 O4/oil are 40,36.17 and 31 mN/m,respectively.Fe3 O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2 O3,due to their larger number of active surface sites and saturation magnetization,which accounts for the effectiveness of Fe3 O4 in reducing IFT.展开更多
In this article, following a brief introduction concerning experimental measurements of surface and interfacial tensions, methods for calculating surface tension and surface segregation for binary, ternary, and multic...In this article, following a brief introduction concerning experimental measurements of surface and interfacial tensions, methods for calculating surface tension and surface segregation for binary, ternary, and multicomponent high-temperature melts based on Bulter's original treatment [ 1] and on available physical properties and thermodynamic data, especially excess Gibbs free energies of bulk phase and surface phase versus temperature obtained from thermodynamic databases using the calculation of phase diagram (CALPHAD) approach, with special attention to the model parameter β, have been described. In addition, the geometric models can be extended to predict surface tensions of multicom- ponent systems from those of sub-binary systems. For illustration, some calculated examples, including Pb-free soldering systems and phase-diagram evaluation of binary alloys in nanoparticle systems are given. On the basis of surface tensions of high-temperature melts, interracial tensions between liquid alloy and molten slag as well as molten slag and molten matter can be calculated using the Girifalco-Good equation [2]. Modifications are suggested in the Nishizawa's model [3] for estimation of interracial tension in liquid metal (A)/ceramics (MX) systems so that the calculations can be carried out based on the sublattice model and thermodynamic data, without deliberately differentiating the phase of MX at high temperature. Finally, the derivation of an approximate expression for predicting interfacial tension between the high-temperature multicomponent melts, employing Becker's model [4] in conjunction with Bulter's equation and inteffacial tension data of the simple systems is described, and some examples concerning pyrometallurgical systems are given for better understanding.展开更多
The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodiu...The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodium chloride, sodium hydrate and Daqing crude oil. Experimental results indicated that active species would diffuse from oil/aqueous interface to aqueous phase and finally an equilibrium could be reached in the system with increasing contact time. Moreover, the minimum IFT and equilibrium IFT values increased with increasing contact time and a linear relationship existed between dynamic IFT and f^-1/2 when IFT value approaching the minimum and after the minimum IFT was reached. This indicated that the dynamic IFT-time behavior was diffusion controlled. The oil and aqueous phases were analyzed by infrared (IR) spectroscopy. IR spectra of oil and aqueous phases illustrated that the content of active species in the oil phase decreased, but the content of active species in the aqueous phase increased after alkali reacted with crude oil. This indicated that the active species present in oil played an important role in reducing IFT.展开更多
Piperacillin is a polar organic substance,and can reduce the interfacial tension of oil and water when dissolved in water.In this study,changes in dichloromethane–water interfacial tensions and microdroplet sizes dur...Piperacillin is a polar organic substance,and can reduce the interfacial tension of oil and water when dissolved in water.In this study,changes in dichloromethane–water interfacial tensions and microdroplet sizes during piperacillin synthesis from an aqueous solution of ampicillin and dichloromethane solution of 4-ethyl-2,3-dioxo-1-piperazine carbonyl chloride(EDPC)were observed using a pendent drop technique and a coaxial ring tube system with embedded high-speed camera,respectively.It was found that the rapid N-acylation reaction caused the piperacillin at the interface to synthesize rapidly and diffuse out slowly,resulting in the interfacial tension decreased from 19.5 m N·m-1 to 7.2 m N·m-1 rapidly and then increased slowly as the concentrations of ampicillin and EDPC were 0.05 mol·L-1 and 0.1 mol·L-1.Meanwhile,the increase in the concentration of EDPC increased the peak concentration of piperacillin at the interface,and the addition of ethyl acetate to the ampicillin solution promoted mass transfer and reduced the aggregation of piperacillin effectively.During synthesis,the interfacial tension decreased,leading to a change in droplet sizes in the micro-reaction system.The two-phase reaction was carried out in a coaxial ring tube,with ampicillin and EDPC solutions as continuous and dispersed phases,respectively.The reaction reduced the dripping flow area,and the addition of ethyl acetate to the ampicillin solution slightly affected the division of the flow pattern.Under the same flow conditions,the droplet sizes of the reaction group were smaller than those of the no reaction group.The experimental results demonstrated that the increase of the continuous phase,decrease in the dispersed phase flow rate,or increase in EDPC concentration making droplet sizes smaller,and the addition of ethyl acetate slightly affected droplet sizes.These findings are important for the design and optimization of piperacillin synthesis reactors.展开更多
The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measu...The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measurement of interfacial shear viscosity, interfacial tension (IFT) and emulsion stability. With increasing petroleum sulphonate concentration, IFT between the formation water and the asphaltene, resin and crude model oils decreases significantly. The interfacial shear viscosity and emulsion stability of asphaltene and crude model oil system increase for the petroleum sulphonate concentration in the range 0.1% to 0.3%, and decrease slightly when the concentration of the surfactant is 0.5%. There exists a close correlation between the interfacial shear viscosity and the stability of the emulsions formed by asphaltene or crude model oils and petroleum sulphonate solution.The stability of the emulsions is determined by the strength of the interfacial film formed of petroleum sulphonate molecules and the natural interfacial active components in the asphaltene fraction and the crude oil. The asphaltene in the crude oil plays a major role in determining the interfacial properties and the stability of the emulsions.展开更多
The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemica...The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.展开更多
Commonly used flow improvers in oilfields,such as ethylene–vinyl acetate copolymer(EVA),poly(octadecyl acrylate)(POA),and polymethylsilsesquioxane(PMSQ)are proven to be effective to enhance the flowability of crude o...Commonly used flow improvers in oilfields,such as ethylene–vinyl acetate copolymer(EVA),poly(octadecyl acrylate)(POA),and polymethylsilsesquioxane(PMSQ)are proven to be effective to enhance the flowability of crude oil.However,the addition of these flow improvers may change the stability of the emulsion and make the crude oil treatment process challenging.In this research,the impacts of different flow improvers on the interfacial properties of the emulsions containing asphaltenes are systematically investigated.The co-adsorption behaviors of the flow improvers and asphaltenes are analyzed through dynamic interfacial tension(DIFT).The rheological properties of the interfacial layer after the adsorption are explored via dilational viscoelasticity.Significant difference is observed in the structural properties of the interface adsorbed by different flow improvers,which is attributed to different interactions between the flow improvers and asphaltenes.To investigate these interactions,conductivity,asphaltenes precipitation,dynamic light scattering(DLS),and contact angle experiments are conducted systematically.Results show that EVA and POA can alter the interfacial properties by changing the asphaltene dispersion state.The interaction between EVA and asphaltenes is stronger than that between POA and asphaltenes due to the difference in molecular structures.Unlike EVA and POA,the change of interfacial property with the addition of PMSQ is attributed to the partial adsorption of asphaltenes on PMSQ.展开更多
Young's equation is a fundamental equation in capillarity and wetting, which reflects the balance of the horizontal components of the three interracial tensions with the contact angle (CA). However, it does not con...Young's equation is a fundamental equation in capillarity and wetting, which reflects the balance of the horizontal components of the three interracial tensions with the contact angle (CA). However, it does not consider the vertical component of the liquid-vapor interracial tension (VCLVIT). It is now well understood that the VCLVIT causes the elastic deformation of the solid substrate, which plays a significant role in the fabrication of the microfluidic devices because of the wide use of the soft materials. In this paper, the theoretical, experimental, and numerical aspects of the problem are reviewed. The effects of the VCLVIT-induced surface deformation on the wetting and spreading, the deflection of the microcantilever, and the elasto.capillarity and electro- elasto.capillarity are discussed. Besides a brief review on the historical development and the recent advances, some suggestions on the future research are also provided. Key words展开更多
Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to c...Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to capture the vapor–liquid equilibria, liquid–liquid equilibria, and phase densities of CO2/H2O mixtures. A comprehensive analysis reveals that Peng–Robinson equation of state (PR EOS) (Peng and Robinson 1976), Twu α function (Twu et al. 1991), Huron–Vidal mixing rule (Huron and Vidal 1979), and Abudour et al. (2013) volume translation model (Abudour et al. 2013) is the best model among the ones examined;it yields average absolute percentage errors of 5.49% and 2.90% in reproducing the experimental phase composition data and density data collected in the literature. After achieving the reliable modeling of phase compositions and densities, a new IFT correlation based on the aforementioned PR EOS model is proposed through a nonlinear regression of the measured IFT data collected from the literature over 278.15–477.59 K and 1.00–1200.96 bar. Although the newly proposed IFT correlation only slightly improves the prediction accuracy yielded by the refitted Chen and Yang (2019)’s correlation (Chen and Yang 2019), the proposed correlation avoids the inconsistent predictions present in Chen and Yang (2019)’s correlation and yields smooth IFT predictions.展开更多
Interfacial tension between liquid Al and molten fluoride salt was determined using sessile drop method combined with X-ray radiograph.A computer program of curve-fitting for coordination of configuration of sessile d...Interfacial tension between liquid Al and molten fluoride salt was determined using sessile drop method combined with X-ray radiograph.A computer program of curve-fitting for coordination of configuration of sessile drop was used in the picture processing of the sessile drop.Regressive equation were worked out to calculate the density of the molten salt.The in- fluence of mole ratio of NaF/AlF_3,content of Li_2CO_3 and rare-earth oxides in the molten salt on interfacial tension of Al-salt was discussed.The contact angles of liquid Al on the sur- face of graphite,graphitized carbon cathode and the graphite with coating of TiB_2 were de- termined.展开更多
The interfacial tension between FeO-CaO-SiO_2-MgO system slag and Cu-Fe-S system matte was determinated by the X-ray radiograph sessile drop method.The effects of FeO/SiO_2 ratio in the slag,contents of CaO,FeO,ZnO an...The interfacial tension between FeO-CaO-SiO_2-MgO system slag and Cu-Fe-S system matte was determinated by the X-ray radiograph sessile drop method.The effects of FeO/SiO_2 ratio in the slag,contents of CaO,FeO,ZnO and CaF_2 in the slag on interracial tension and the relation of inter facial tension with the grade of matte and temperature have been studied.The floatation coefficient and film coefficient of slag-matte system has been calculated and the mechanism of the transition of iron and oxygen from slag to matte has also been discussed.展开更多
Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,becau...Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,because dripping flow in normal microdevices can’t be easily realized for the systems.In this work,we designed a capillary embedded step T-junction microdevice to develop a modified microfluidic approach to determine the interfacial tension of several systems,specially,for the systems with low interfacial tension and high viscosity.This method combines a classical T-junction geometry with a step to strengthen the shear force further to form monodispersed water/oil(w/o)or aqueous two-phase(ATP)droplet under dripping flow.For systems with low interfacial tension and high viscosity,the operating range for dripping flow is relative narrow whereas a wider dripping flow operating range can be realized in this step Tjunction microdevice when the capillary number of the continuous phase is in the range of 0.01 to 0.7.Additionally,the viscosity of the continuous phase was also measured in the same microdevice.Several different systems with an interfacial tension from 1.0 to 8.0 m N·m^(-1) and a viscosity from 0.9 to 10 m Pa·s were measured accurately.The experimental results are in good agreement with the data obtained from a commercial interfacial tensiometer and a spinning digital viscometer.This work could extend the application of microfluidic flows.展开更多
Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment ...Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.展开更多
This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial t...This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.展开更多
Since solid-liquid interfacial nanobubbles(INBs)were first imaged,their long-term stability and large contact angle have been perplexing scientists.This study aimed to investigate the influence of internal gas density...Since solid-liquid interfacial nanobubbles(INBs)were first imaged,their long-term stability and large contact angle have been perplexing scientists.This study aimed to investigate the influence of internal gas density and external gas monolayers on the contact angle and stability of INB using molecular dynamics simulations.First,the contact angle of a water droplet was simulated at different nitrogen densities.The results showed that the contact angle increased sharply with an increase in nitrogen density,which was mainly caused by the decrease in solid-gas interfacial tension.However,when the nitrogen density reached 2.57 nm^(-3),an intervening gas monolayer(GML)was formed between the solid and water.After the formation of GML,the contact angle slightly increased with increasing gas density.The contact angle increased to 180°when the nitrogen density reached 11.38 nm^(-3),indicating that INBs transformed into a gas layer when they were too small.For substrates with different hydrophobicities,the contact angle after the formation of GML was always larger than 140°and it was weakly correlated with substrate hydrophobicity.The increase in contact angle with gas density represents the evolution of contact angle from macro-to nano-bubble,while the formation of GML may correspond to stable INBs.The potential of mean force curves demonstrated that the substrate with GML could attract gas molecules from a longer distance without the existence of a potential barrier compared with the bare substrate,indicating the potential of GML to act as a gas-collecting panel.Further research indicated that GML can function as a channel to transport gas molecules to INBs,which favors stability of INBs.This research may shed new light on the mechanisms underlying abnormal contact angle and long-term stability of INBs.展开更多
文摘The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potentials were studied and compared at a water/cyclohexane model interface using a droplet tensiometer (Tracker Teclis, Longessaigne, France). The progressive interfacial adsorption of the NPs in the aqueous phase was monitored by tensiometry. The model interface was maintained and observed in a drop tensiometer, analyzed via axisymmetric drop shape analysis (ADSA), to determine the interfacial properties. Given the direct relationship between the stability of Pickering emulsions (emulsions stabilized by solid nanoparticles) and the interfacial properties of these layers, different nanoparticle systems were compared. Specifically, Eudragit NPs of different sizes were examined. Moreover, the reduction of the Zeta potential with PEG-6000 induces partial aggregation of the NPs (referred to as NP flocs), significantly impacting the stability of the interfacial layer. Dynamic surface tension measurements indicate a significant decrease in interfacial tension with Eudragit® nanoparticles (NPs). This reduction correlates with the size of the NPs, highlighting that this parameter does not operate in isolation. Other factors, such as the contact angle and wettability of the nanoparticles, also play a critical role. Notably, larger NPs further diminished the interfacial tension. This study enhances our understanding of the stability of Pickering emulsions stabilized by Eudragit® L100 polymeric nanoparticles.
基金The authors would like to acknowledge the Bu Ali Sina University and the Iran National Science Foundation:INSF,under Grant number of 99031559,for their financial supports.
文摘Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
文摘Two-dimensional(2D) transition metal carbides, carbonitrides and nitrides, known as MXenes, are emerging quickly at the frontiers of 2D materials world. Their exotic properties such as the highest electrical conductivity among all solution-processed 2 D materials, the best electromagnetic interference shielding performance outperforming that of copper or aluminum at a nanoscale thickness, as well as the highest volumetric capacitance for pseudocapacitors, have been attracting extensive fundamental research and applications. Their unique surface chemistries, that is, hydrophilic groups terminated on the surface of MXenes after etching and delamination, enable plenty of opportunities for assembling into MXene building blocks. Particularly, assembling at liquid–liquid, liquid–solid, liquid–air, and solid–solid interfaces allows the efficient fabrication of various structures, including MXene surfactants, MXene heterostructures, MXene transparent films. Interfacial assembly of MXenes is of significance in unveiling more versatilities of MXenes as well as impacts on novel MXene-based architectures, based on which enhanced performance of devices is achieved. As such, this review focuses on the interfacial assembly of MXenes, explaining mechanisms behind various assembling and providing classical examples for corresponding interfacial assembling techniques. Applications of these as-assembled architectures are also discussed in brief. We believe this review may shed light on the interfacial chemistry of MXenes, thus guiding more efficient fabrication of MXene-based functional films/coatings/electrodes/devices.
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2006CB705805)the National Key Scientific and Technological Project (863 Project)(Grant No.2008ZX05011)
文摘The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,interfacial shear viscosity and Zeta potential of the oil/water system.The result showed that both NaOH and Na_2CO_3 could react with acid substances in the crude oil to produce interfacially active components,which are adsorbed on the interfaces between the aqueous phase and oil phase, resulting in a decrease of the interfacial tension,negatively charging the surface of oil droplets,but making little change in the interfacial shear viscosity.For the same ionic strength of NaOH and Na_2CO_3, the interfacial tension of NaOH solution-crude oil system is lower,but the interfacial shear viscosity of NaOH solution-crude oil system is higher,than that of Na_2CO_3 solution-crude oil system.The negative value of the Zeta potential on the surface of the oil droplets is large.Accordingly,the O/W emulsion of NaOH solution-crude oil system is more stable than that of Na_2CO_3 solution-crude oil system.
文摘There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock surfaces.This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface.Molecular dynamics simulation was used to determine the interfacial energy(strength) and adsorption of Fe2 O3 and Fe3 O4 nanofluids infused in reservoir sandstones.Fourier transform infrared spectroscopy and X-ray photon spectroscopy(XPS) were used to monitor interaction of silicate species with Fe2 O3 and Fe3 O4.The spectral changes show the variation of dominating silicate anions in the solution.Also,the XPS peaks for Si,C and Fe at 190,285 and 700 eV,respectively,are less distinct in the spectra of sandstone aged in the Fe3 O4 nanofluid,suggesting the intense adsorption of the Fe3 O4 with the crude oil.The measured IFT for brine/oil,Fe2 O3/oil and Fe3 O4/oil are 40,36.17 and 31 mN/m,respectively.Fe3 O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2 O3,due to their larger number of active surface sites and saturation magnetization,which accounts for the effectiveness of Fe3 O4 in reducing IFT.
基金This study was financially supported by the National Natural Science Foundation of China (Nos. 59934090, 50071009) and the National Doctorate Fund of State Education Ministry of China (No. 2000000802)
文摘In this article, following a brief introduction concerning experimental measurements of surface and interfacial tensions, methods for calculating surface tension and surface segregation for binary, ternary, and multicomponent high-temperature melts based on Bulter's original treatment [ 1] and on available physical properties and thermodynamic data, especially excess Gibbs free energies of bulk phase and surface phase versus temperature obtained from thermodynamic databases using the calculation of phase diagram (CALPHAD) approach, with special attention to the model parameter β, have been described. In addition, the geometric models can be extended to predict surface tensions of multicom- ponent systems from those of sub-binary systems. For illustration, some calculated examples, including Pb-free soldering systems and phase-diagram evaluation of binary alloys in nanoparticle systems are given. On the basis of surface tensions of high-temperature melts, interracial tensions between liquid alloy and molten slag as well as molten slag and molten matter can be calculated using the Girifalco-Good equation [2]. Modifications are suggested in the Nishizawa's model [3] for estimation of interracial tension in liquid metal (A)/ceramics (MX) systems so that the calculations can be carried out based on the sublattice model and thermodynamic data, without deliberately differentiating the phase of MX at high temperature. Finally, the derivation of an approximate expression for predicting interfacial tension between the high-temperature multicomponent melts, employing Becker's model [4] in conjunction with Bulter's equation and inteffacial tension data of the simple systems is described, and some examples concerning pyrometallurgical systems are given for better understanding.
基金National Basic Research Program of China(973 Program)
文摘The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodium chloride, sodium hydrate and Daqing crude oil. Experimental results indicated that active species would diffuse from oil/aqueous interface to aqueous phase and finally an equilibrium could be reached in the system with increasing contact time. Moreover, the minimum IFT and equilibrium IFT values increased with increasing contact time and a linear relationship existed between dynamic IFT and f^-1/2 when IFT value approaching the minimum and after the minimum IFT was reached. This indicated that the dynamic IFT-time behavior was diffusion controlled. The oil and aqueous phases were analyzed by infrared (IR) spectroscopy. IR spectra of oil and aqueous phases illustrated that the content of active species in the oil phase decreased, but the content of active species in the aqueous phase increased after alkali reacted with crude oil. This indicated that the active species present in oil played an important role in reducing IFT.
基金financially supported by the National Key Research and Development Program of China(2019YFA0905100)the National Natural Science Foundation of China(21878169 and 21991102)Tsinghua University Initiative Scientific Research Program(2018Z05JZY010)。
文摘Piperacillin is a polar organic substance,and can reduce the interfacial tension of oil and water when dissolved in water.In this study,changes in dichloromethane–water interfacial tensions and microdroplet sizes during piperacillin synthesis from an aqueous solution of ampicillin and dichloromethane solution of 4-ethyl-2,3-dioxo-1-piperazine carbonyl chloride(EDPC)were observed using a pendent drop technique and a coaxial ring tube system with embedded high-speed camera,respectively.It was found that the rapid N-acylation reaction caused the piperacillin at the interface to synthesize rapidly and diffuse out slowly,resulting in the interfacial tension decreased from 19.5 m N·m-1 to 7.2 m N·m-1 rapidly and then increased slowly as the concentrations of ampicillin and EDPC were 0.05 mol·L-1 and 0.1 mol·L-1.Meanwhile,the increase in the concentration of EDPC increased the peak concentration of piperacillin at the interface,and the addition of ethyl acetate to the ampicillin solution promoted mass transfer and reduced the aggregation of piperacillin effectively.During synthesis,the interfacial tension decreased,leading to a change in droplet sizes in the micro-reaction system.The two-phase reaction was carried out in a coaxial ring tube,with ampicillin and EDPC solutions as continuous and dispersed phases,respectively.The reaction reduced the dripping flow area,and the addition of ethyl acetate to the ampicillin solution slightly affected the division of the flow pattern.Under the same flow conditions,the droplet sizes of the reaction group were smaller than those of the no reaction group.The experimental results demonstrated that the increase of the continuous phase,decrease in the dispersed phase flow rate,or increase in EDPC concentration making droplet sizes smaller,and the addition of ethyl acetate slightly affected droplet sizes.These findings are important for the design and optimization of piperacillin synthesis reactors.
基金国家重点基础研究发展计划(973计划),an International Cooperation Research Program
文摘The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measurement of interfacial shear viscosity, interfacial tension (IFT) and emulsion stability. With increasing petroleum sulphonate concentration, IFT between the formation water and the asphaltene, resin and crude model oils decreases significantly. The interfacial shear viscosity and emulsion stability of asphaltene and crude model oil system increase for the petroleum sulphonate concentration in the range 0.1% to 0.3%, and decrease slightly when the concentration of the surfactant is 0.5%. There exists a close correlation between the interfacial shear viscosity and the stability of the emulsions formed by asphaltene or crude model oils and petroleum sulphonate solution.The stability of the emulsions is determined by the strength of the interfacial film formed of petroleum sulphonate molecules and the natural interfacial active components in the asphaltene fraction and the crude oil. The asphaltene in the crude oil plays a major role in determining the interfacial properties and the stability of the emulsions.
基金Supported by the National Key Basic Research Programme (No.973-G1999022505),University of Petroleum Basic Research Fund(No.ZX9904)
文摘The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.
基金supported by the National Natural Science Foundation of China(51704315)。
文摘Commonly used flow improvers in oilfields,such as ethylene–vinyl acetate copolymer(EVA),poly(octadecyl acrylate)(POA),and polymethylsilsesquioxane(PMSQ)are proven to be effective to enhance the flowability of crude oil.However,the addition of these flow improvers may change the stability of the emulsion and make the crude oil treatment process challenging.In this research,the impacts of different flow improvers on the interfacial properties of the emulsions containing asphaltenes are systematically investigated.The co-adsorption behaviors of the flow improvers and asphaltenes are analyzed through dynamic interfacial tension(DIFT).The rheological properties of the interfacial layer after the adsorption are explored via dilational viscoelasticity.Significant difference is observed in the structural properties of the interface adsorbed by different flow improvers,which is attributed to different interactions between the flow improvers and asphaltenes.To investigate these interactions,conductivity,asphaltenes precipitation,dynamic light scattering(DLS),and contact angle experiments are conducted systematically.Results show that EVA and POA can alter the interfacial properties by changing the asphaltene dispersion state.The interaction between EVA and asphaltenes is stronger than that between POA and asphaltenes due to the difference in molecular structures.Unlike EVA and POA,the change of interfacial property with the addition of PMSQ is attributed to the partial adsorption of asphaltenes on PMSQ.
基金Project supported by the National Natural Science Foundation of China (No. 11002051)
文摘Young's equation is a fundamental equation in capillarity and wetting, which reflects the balance of the horizontal components of the three interracial tensions with the contact angle (CA). However, it does not consider the vertical component of the liquid-vapor interracial tension (VCLVIT). It is now well understood that the VCLVIT causes the elastic deformation of the solid substrate, which plays a significant role in the fabrication of the microfluidic devices because of the wide use of the soft materials. In this paper, the theoretical, experimental, and numerical aspects of the problem are reviewed. The effects of the VCLVIT-induced surface deformation on the wetting and spreading, the deflection of the microcantilever, and the elasto.capillarity and electro- elasto.capillarity are discussed. Besides a brief review on the historical development and the recent advances, some suggestions on the future research are also provided. Key words
文摘Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to capture the vapor–liquid equilibria, liquid–liquid equilibria, and phase densities of CO2/H2O mixtures. A comprehensive analysis reveals that Peng–Robinson equation of state (PR EOS) (Peng and Robinson 1976), Twu α function (Twu et al. 1991), Huron–Vidal mixing rule (Huron and Vidal 1979), and Abudour et al. (2013) volume translation model (Abudour et al. 2013) is the best model among the ones examined;it yields average absolute percentage errors of 5.49% and 2.90% in reproducing the experimental phase composition data and density data collected in the literature. After achieving the reliable modeling of phase compositions and densities, a new IFT correlation based on the aforementioned PR EOS model is proposed through a nonlinear regression of the measured IFT data collected from the literature over 278.15–477.59 K and 1.00–1200.96 bar. Although the newly proposed IFT correlation only slightly improves the prediction accuracy yielded by the refitted Chen and Yang (2019)’s correlation (Chen and Yang 2019), the proposed correlation avoids the inconsistent predictions present in Chen and Yang (2019)’s correlation and yields smooth IFT predictions.
文摘Interfacial tension between liquid Al and molten fluoride salt was determined using sessile drop method combined with X-ray radiograph.A computer program of curve-fitting for coordination of configuration of sessile drop was used in the picture processing of the sessile drop.Regressive equation were worked out to calculate the density of the molten salt.The in- fluence of mole ratio of NaF/AlF_3,content of Li_2CO_3 and rare-earth oxides in the molten salt on interfacial tension of Al-salt was discussed.The contact angles of liquid Al on the sur- face of graphite,graphitized carbon cathode and the graphite with coating of TiB_2 were de- termined.
文摘The interfacial tension between FeO-CaO-SiO_2-MgO system slag and Cu-Fe-S system matte was determinated by the X-ray radiograph sessile drop method.The effects of FeO/SiO_2 ratio in the slag,contents of CaO,FeO,ZnO and CaF_2 in the slag on interracial tension and the relation of inter facial tension with the grade of matte and temperature have been studied.The floatation coefficient and film coefficient of slag-matte system has been calculated and the mechanism of the transition of iron and oxygen from slag to matte has also been discussed.
基金financially supported by the National Natural Science Foundation of China (21991104)
文摘Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,because dripping flow in normal microdevices can’t be easily realized for the systems.In this work,we designed a capillary embedded step T-junction microdevice to develop a modified microfluidic approach to determine the interfacial tension of several systems,specially,for the systems with low interfacial tension and high viscosity.This method combines a classical T-junction geometry with a step to strengthen the shear force further to form monodispersed water/oil(w/o)or aqueous two-phase(ATP)droplet under dripping flow.For systems with low interfacial tension and high viscosity,the operating range for dripping flow is relative narrow whereas a wider dripping flow operating range can be realized in this step Tjunction microdevice when the capillary number of the continuous phase is in the range of 0.01 to 0.7.Additionally,the viscosity of the continuous phase was also measured in the same microdevice.Several different systems with an interfacial tension from 1.0 to 8.0 m N·m^(-1) and a viscosity from 0.9 to 10 m Pa·s were measured accurately.The experimental results are in good agreement with the data obtained from a commercial interfacial tensiometer and a spinning digital viscometer.This work could extend the application of microfluidic flows.
文摘Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.
基金Kuwait University General Research Facilities (GE01/17,GE01/07,and GS03/01)for their support in conducting the necessary experimental work of this study。
文摘This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.
基金This work was supported by the National Natural Science Foundation of China(51920105007,51904300 and 52104277)the Jiangsu Natural Science Fund-Youth Fund(BK20210500).
文摘Since solid-liquid interfacial nanobubbles(INBs)were first imaged,their long-term stability and large contact angle have been perplexing scientists.This study aimed to investigate the influence of internal gas density and external gas monolayers on the contact angle and stability of INB using molecular dynamics simulations.First,the contact angle of a water droplet was simulated at different nitrogen densities.The results showed that the contact angle increased sharply with an increase in nitrogen density,which was mainly caused by the decrease in solid-gas interfacial tension.However,when the nitrogen density reached 2.57 nm^(-3),an intervening gas monolayer(GML)was formed between the solid and water.After the formation of GML,the contact angle slightly increased with increasing gas density.The contact angle increased to 180°when the nitrogen density reached 11.38 nm^(-3),indicating that INBs transformed into a gas layer when they were too small.For substrates with different hydrophobicities,the contact angle after the formation of GML was always larger than 140°and it was weakly correlated with substrate hydrophobicity.The increase in contact angle with gas density represents the evolution of contact angle from macro-to nano-bubble,while the formation of GML may correspond to stable INBs.The potential of mean force curves demonstrated that the substrate with GML could attract gas molecules from a longer distance without the existence of a potential barrier compared with the bare substrate,indicating the potential of GML to act as a gas-collecting panel.Further research indicated that GML can function as a channel to transport gas molecules to INBs,which favors stability of INBs.This research may shed new light on the mechanisms underlying abnormal contact angle and long-term stability of INBs.