In order to improve the healing performance and increase the service life of the polymer matrix composites, microcapsules were prepared by interracial polymerization process with urea formaldehyde resin and epoxy resi...In order to improve the healing performance and increase the service life of the polymer matrix composites, microcapsules were prepared by interracial polymerization process with urea formaldehyde resin and epoxy resin E-51 as the wall material and core material separately. The effects of core/shell mass ratio and emulsifier on the distribution, topography and encapsulation rate of microcapsules were investigated. By optimizing the conditions, microcapsules with little particle size, well dispersion and compact surface were prepared. The distribution, topography, stability and compositions of the microcapsules were characterized using Nano-2s, optical microscope, scanning electron microscopy, thermal analysis and Fourier transform infrared spectroscopy. The osmosis performance of the microcapsules was evaluated. The experimental results showed that the ratio of core/shell materials (1:1) and 1% DBS as emulsifier were optimum preparation conditions and the encapsulation rate was 62.5%. The microcapsules can be synthesized successfully with mean diameter 548.6 nm and exhibit a good chemical stability below 225 ℃. The FTIR result indicated that urea-formaldehyde resin was formed and the core materials were successfully encapsulated in urea-formaldehyde shell. Osmosis performance evaluation showed that the microcapsules were well coated and slowly osmosed.展开更多
Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solution...Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofmeister effect, and the theory including ion polarization and ionic correlation shows significant improvement compared with the classical theory. Ion polarization causes a strong Hofmeister effect and further dramatic decrease to surface potential, especially at low concentration; in contrast, ionic correlation that is closely associated with potential decay distance overestimates surface potential and plays an increasing role at higher ionic concentrations. Contributions of ion polarization and ionic correlation are respectively assessed, and a critical point is detected where their contributions can be exactly counteracted. Ionic correlation can be almost neglected at low ionic concentrations, while ion polarization, albeit less important at high concentrations, should be considered across the entire concentration range. The results thus obtained are applicable to other interfacial processes.展开更多
The surface morphology of Zn O films at different annealing temperatures and the performance of polymer solar cells(PSCs) with Zn O as the electron transport layer are studied.The low temperature sol-gel processed Zn ...The surface morphology of Zn O films at different annealing temperatures and the performance of polymer solar cells(PSCs) with Zn O as the electron transport layer are studied.The low temperature sol-gel processed Zn O film has smoother surface than that in higher temperature,which results in the best photovoltaic performance with a power conversion efficiency(PCE) of 3.66% for P3HT:PC61BM based solar cell.With increasing annealing temperature,the photovoltaic performance first deceases and then increases.It could be ascribed to the synergy effects of interface area,the conductivity and surface energy of Zn O film and series resistance of devices.展开更多
基金Founded by the National Natural Science Foundation of China(21106022)the Science and Technology Planning Project of Guangdong Province,China(2013B010404045)the Educational Commission of Guangdong Province,China(Yq2013100)
文摘In order to improve the healing performance and increase the service life of the polymer matrix composites, microcapsules were prepared by interracial polymerization process with urea formaldehyde resin and epoxy resin E-51 as the wall material and core material separately. The effects of core/shell mass ratio and emulsifier on the distribution, topography and encapsulation rate of microcapsules were investigated. By optimizing the conditions, microcapsules with little particle size, well dispersion and compact surface were prepared. The distribution, topography, stability and compositions of the microcapsules were characterized using Nano-2s, optical microscope, scanning electron microscopy, thermal analysis and Fourier transform infrared spectroscopy. The osmosis performance of the microcapsules was evaluated. The experimental results showed that the ratio of core/shell materials (1:1) and 1% DBS as emulsifier were optimum preparation conditions and the encapsulation rate was 62.5%. The microcapsules can be synthesized successfully with mean diameter 548.6 nm and exhibit a good chemical stability below 225 ℃. The FTIR result indicated that urea-formaldehyde resin was formed and the core materials were successfully encapsulated in urea-formaldehyde shell. Osmosis performance evaluation showed that the microcapsules were well coated and slowly osmosed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41371249,41201223,and 41101223)the Fundamental Research Funds for the Central Universities,China(Grant No.XDJK2015C059)
文摘Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofmeister effect, and the theory including ion polarization and ionic correlation shows significant improvement compared with the classical theory. Ion polarization causes a strong Hofmeister effect and further dramatic decrease to surface potential, especially at low concentration; in contrast, ionic correlation that is closely associated with potential decay distance overestimates surface potential and plays an increasing role at higher ionic concentrations. Contributions of ion polarization and ionic correlation are respectively assessed, and a critical point is detected where their contributions can be exactly counteracted. Ionic correlation can be almost neglected at low ionic concentrations, while ion polarization, albeit less important at high concentrations, should be considered across the entire concentration range. The results thus obtained are applicable to other interfacial processes.
基金supported by the Independent Innovation Foundation of Shandong University(No.2014YQ015)
文摘The surface morphology of Zn O films at different annealing temperatures and the performance of polymer solar cells(PSCs) with Zn O as the electron transport layer are studied.The low temperature sol-gel processed Zn O film has smoother surface than that in higher temperature,which results in the best photovoltaic performance with a power conversion efficiency(PCE) of 3.66% for P3HT:PC61BM based solar cell.With increasing annealing temperature,the photovoltaic performance first deceases and then increases.It could be ascribed to the synergy effects of interface area,the conductivity and surface energy of Zn O film and series resistance of devices.