Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal ...Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal antennas were correlated with the data received from the Vertically Polarized Antennas (VPAs) to estimate and cancel the interference adaptively in the VPAs. Suppressing the interference after each coherent integration time interval, about 25 dB signal-to-interference ratio is expected with the experimentally derived data.展开更多
The digital proportion control is introduced to improve the performance of the analog adaptive interference cancellation system (ICS). For the high frequency parts of the signals after multiplier are not required,th...The digital proportion control is introduced to improve the performance of the analog adaptive interference cancellation system (ICS). For the high frequency parts of the signals after multiplier are not required,the sampling frequency need not satisfy the sampling theorem for high frequency. Because the sampling,calculation and output expend time in digital control,the ideal condition,delay condition and delay-wait condition are taken into account. Through analyzing the system model with three conditions,we gain the stable conditions of the system,the optimization step factors that can make the system converge fastest and the formulas of the interference cancellation ratios (ICRs). One step convergence can be accomplished under ideal condition,whereas the system can not converge in one step under delay condition and delay-wait condition. The calculation results show the convergence speed of delay-wait condition is slower than that of delay condition. The ICR is improved with the increase of the step factor which is in stable bound,but the convergence speed is decreased if the step factor exceeds the optimization step factor. In order to avoid that confine,the method of amending the steady state weight to improve the ICR is proposed. The analyses are in agreement with the computer simulations.展开更多
该文针对单路延迟对消系统不能有效解决多径信道的超短波无线电台共址干扰消除问题,给出了等间隔多路延迟正交合成的射频干扰对消方案,进而提出了新的衰减系数求解方法。在设定时间延迟范围和参考信号路数基础上,该方法通过迭代加权实...该文针对单路延迟对消系统不能有效解决多径信道的超短波无线电台共址干扰消除问题,给出了等间隔多路延迟正交合成的射频干扰对消方案,进而提出了新的衰减系数求解方法。在设定时间延迟范围和参考信号路数基础上,该方法通过迭代加权实时有效估计多路参考信号的相关矩阵,接收信号与参考信号的相关向量,进而求解维纳霍夫方程得到各路衰减系数,有效抑制多径信道的自干扰,克服了已有方法需同时调节幅度和相位,以及相关向量和相关矩阵估计精度低的不足。另外,理论分析了衰减系数的求解过程,并推导了自干扰对消比的闭合表达式。分析和仿真结果表明,该方法在一定延迟误差情况下,可获得90 d B以上的对消比,比已有方法提高了约9 d B,有效解决了多径信道的射频干扰对消问题。展开更多
首先,提出了一种基于自动增益控制(automatic gain control,AGC)技术的自适应干扰对消系统,并对该对消系统进行了建模与理论分析;然后,研究了AGC对消系统的收敛时间、干扰对消比和有用信号损耗特性,并分析了零漂对系统性能的影响。分析...首先,提出了一种基于自动增益控制(automatic gain control,AGC)技术的自适应干扰对消系统,并对该对消系统进行了建模与理论分析;然后,研究了AGC对消系统的收敛时间、干扰对消比和有用信号损耗特性,并分析了零漂对系统性能的影响。分析结果表明:使用该对消系统可有效降低零漂对系统性能的影响;在干扰信号功率较小时,也可得到较高的干扰对消比和较快的收敛速度。实验结果也验证了理论分析的正确性和AGC技术的有效性。展开更多
文摘Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal antennas were correlated with the data received from the Vertically Polarized Antennas (VPAs) to estimate and cancel the interference adaptively in the VPAs. Suppressing the interference after each coherent integration time interval, about 25 dB signal-to-interference ratio is expected with the experimentally derived data.
文摘The digital proportion control is introduced to improve the performance of the analog adaptive interference cancellation system (ICS). For the high frequency parts of the signals after multiplier are not required,the sampling frequency need not satisfy the sampling theorem for high frequency. Because the sampling,calculation and output expend time in digital control,the ideal condition,delay condition and delay-wait condition are taken into account. Through analyzing the system model with three conditions,we gain the stable conditions of the system,the optimization step factors that can make the system converge fastest and the formulas of the interference cancellation ratios (ICRs). One step convergence can be accomplished under ideal condition,whereas the system can not converge in one step under delay condition and delay-wait condition. The calculation results show the convergence speed of delay-wait condition is slower than that of delay condition. The ICR is improved with the increase of the step factor which is in stable bound,but the convergence speed is decreased if the step factor exceeds the optimization step factor. In order to avoid that confine,the method of amending the steady state weight to improve the ICR is proposed. The analyses are in agreement with the computer simulations.
文摘该文针对单路延迟对消系统不能有效解决多径信道的超短波无线电台共址干扰消除问题,给出了等间隔多路延迟正交合成的射频干扰对消方案,进而提出了新的衰减系数求解方法。在设定时间延迟范围和参考信号路数基础上,该方法通过迭代加权实时有效估计多路参考信号的相关矩阵,接收信号与参考信号的相关向量,进而求解维纳霍夫方程得到各路衰减系数,有效抑制多径信道的自干扰,克服了已有方法需同时调节幅度和相位,以及相关向量和相关矩阵估计精度低的不足。另外,理论分析了衰减系数的求解过程,并推导了自干扰对消比的闭合表达式。分析和仿真结果表明,该方法在一定延迟误差情况下,可获得90 d B以上的对消比,比已有方法提高了约9 d B,有效解决了多径信道的射频干扰对消问题。
文摘首先,提出了一种基于自动增益控制(automatic gain control,AGC)技术的自适应干扰对消系统,并对该对消系统进行了建模与理论分析;然后,研究了AGC对消系统的收敛时间、干扰对消比和有用信号损耗特性,并分析了零漂对系统性能的影响。分析结果表明:使用该对消系统可有效降低零漂对系统性能的影响;在干扰信号功率较小时,也可得到较高的干扰对消比和较快的收敛速度。实验结果也验证了理论分析的正确性和AGC技术的有效性。