An optical fiber hydrophone based on equivalent phase shift fiber Bragg grating (EPS-FBG) with temperature compensation package provides an improvement of sensitivity in underwater acoustic measurement at wide frequ...An optical fiber hydrophone based on equivalent phase shift fiber Bragg grating (EPS-FBG) with temperature compensation package provides an improvement of sensitivity in underwater acoustic measurement at wide frequency range, from 2.SkHz to 12kHz. The acoustic pressure is transduced into elastic vibration of a circle metal disk, resulting in an intensity modulation of the reflected light wave back from fiber Bragg grating (FBG). Experiment shows that the 500 EPS-FBG hydrophone has a minimum detectable acoustic pressure of about at 5 kHz and achieves about 18-dB improvement of acoustic pressure sensitivity compared with a regular apodized FBG hydrophone.展开更多
A fiber Bragg grating (FBG) hydrophone with high sensitivity was demonstrated. This hydrophone used a rubber diaphragm and a copper hard core as the sensing element. To compensate the hydrostatic pressure, a capilla...A fiber Bragg grating (FBG) hydrophone with high sensitivity was demonstrated. This hydrophone used a rubber diaphragm and a copper hard core as the sensing element. To compensate the hydrostatic pressure, a capillary tube was fixed at the end of the hydrophone. Theoretical analysis of the acoustic pressure sensitivity was given in this letter. Experiments were carried out to test the frequency response of the hydrophone. The result shows that when the Young's modulus of the diaphragm is higher, a flatter frequency response will be obtained.展开更多
We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the th...We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.展开更多
文摘An optical fiber hydrophone based on equivalent phase shift fiber Bragg grating (EPS-FBG) with temperature compensation package provides an improvement of sensitivity in underwater acoustic measurement at wide frequency range, from 2.SkHz to 12kHz. The acoustic pressure is transduced into elastic vibration of a circle metal disk, resulting in an intensity modulation of the reflected light wave back from fiber Bragg grating (FBG). Experiment shows that the 500 EPS-FBG hydrophone has a minimum detectable acoustic pressure of about at 5 kHz and achieves about 18-dB improvement of acoustic pressure sensitivity compared with a regular apodized FBG hydrophone.
基金Key Projects Program of Chinese Acadelny of Sciences under Grant No.CXJJ-177.
文摘A fiber Bragg grating (FBG) hydrophone with high sensitivity was demonstrated. This hydrophone used a rubber diaphragm and a copper hard core as the sensing element. To compensate the hydrostatic pressure, a capillary tube was fixed at the end of the hydrophone. Theoretical analysis of the acoustic pressure sensitivity was given in this letter. Experiments were carried out to test the frequency response of the hydrophone. The result shows that when the Young's modulus of the diaphragm is higher, a flatter frequency response will be obtained.
基金This work is sponsored by the the National Nature Science Foundation of China (No. 61675064), Henan Industrial Technology Innovation Program, and Puyang Major Scientific and Technological Project.
文摘We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.