The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it wi...The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.展开更多
In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.Howe...In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.展开更多
Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points...Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.展开更多
The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But th...The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.展开更多
This paper focuses on advanced analysis techniques and design considerations of DC interference generated by HVDC electrodes during normal bipolar and temporary monopolar operations on neighboring metallic utilities, ...This paper focuses on advanced analysis techniques and design considerations of DC interference generated by HVDC electrodes during normal bipolar and temporary monopolar operations on neighboring metallic utilities, with a special emphasis on buried gas and oil pipelines. This study examines the level of pipeline corrosion, the safety status in the vicinity of exposed appurtenances and the impact of DC interference on the integrity of insulating flanges and impressed current cathodic protection (ICCP) systems. Computation results obtained for different soil models show that different soils can lead to completely different DC interference effects. The results and conclusions presented here can be used as a reference to analyze the severity of DC interference on pipelines due to proximate HVDC electrodes.展开更多
A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamical...A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamically tracked by using Kalman estimator under variable environments with time. The polarization filter parameters are designed according to the polarization characteristic of the interference, and the polarization filtering is finished in the target cell. The system scheme of adaptive polarization filter is studied and the tracking performance of polarization filter and improvement of angle measurement precision are simulated. The research results demonstrate this technology can effectively suppress the angle cheating interference in guidance radar and is feasible in engineering.展开更多
A new kind of tunable optical filter is proposed for DWDM optical communication application. It is based on cascaded polarization interference filter (PIF). The period and bandpass width of each PIF are decided by its...A new kind of tunable optical filter is proposed for DWDM optical communication application. It is based on cascaded polarization interference filter (PIF). The period and bandpass width of each PIF are decided by its optical path difference between o-ray and e-ray (OPDOE). When their OPDOEs are proportionately designed, the tuning range and bandpass width depend on OPDOE in the first and the last PIF, respectively. The tuning range, bandpass width and crosstalk are independent each other. The crosstalk is related to the OPDOE ratios among PIFs and can be suppressed by designing the PIF's OPDOE. A set of OPDOE is suggested that are l1, 2 × l1, 22 ×l1, 23 ×l1, 24 ×l1, ..., 2N-4 × l1, 15 × 2N-7 ×l1, 10 × 2N-6 × l1 and 2N-2 ×l1 from the first to the last. This suggested OPDOEs can yield -50-dB crosstalk for any tuning range and bandpass width. The insert loss is less than 1 dB. As its loose alignment requirement, there is no limitation on cascaded PIF number. When 11 PIFs are cascaded, it can achieve 170-nm tuning range, -50-dB crosstalk, bandpass width applicable to 25-GHz channel spacing and 1 dB insert loss.展开更多
In this paper,we propose an ultrabroadband chiral metasurface(CMS)composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate.This innovative structure enable...In this paper,we propose an ultrabroadband chiral metasurface(CMS)composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate.This innovative structure enables ultrabroadband and high-efficiency linear polarization(LP)conversion,as well as asymmetric transmission(AT)effect in the microwave region.The enhanced interference effect of the Fabry-Perot-like resonance cavity greatly expands the bandwidth and efficiency of LP conversion and AT effect.Through numerical simulations,it has been revealed that the cross-polarization transmission coefficients for normal forward(-z)and backward(+z)incidence exceed 0.8 in the frequency range of 4.13 to 17.34 GHz,accompanied by a polarization conversion ratio of over 99%.Furthermore,our microwave experimental results validate the consistency among simulation,theory,and measurement.Additionally,we elucidate the distinct characteristics of ultrabroadband LP conversion and significant AT effect through analysis of polarization azimuth rotation and ellipticity angles,total transmittance,AT coefficient,and electric field distribution.The proposed CMS structure shows excellent polarization conversion properties via AT effect and has potential applications in areas such as radar,remote sensing,and satellite communication.展开更多
Some optical fiber hydrophones, such as PGC Mach-Zehnder Interferometer, have a birefringence of single mode optical fibers which induce signal fading. Especially, if two optical beams from the optical arms are orthog...Some optical fiber hydrophones, such as PGC Mach-Zehnder Interferometer, have a birefringence of single mode optical fibers which induce signal fading. Especially, if two optical beams from the optical arms are orthogonal, the interferomic signal can’t be detected at all. Here a new method is introduced. This is to translate the detected phase difference into a linearly polarized angle, then detect it, so that polarization inducing signal fading will be avoided. In theory, this problem is solved. Furthermore, the effect on measurement results from optical source fluctuation becomes little when using the polarization technique.展开更多
The mechanism and characteristics of spectral polarization imaging technique are presented. The present research and developing trend of spectral polarization remote sensing are introduced. A novel method of spectral ...The mechanism and characteristics of spectral polarization imaging technique are presented. The present research and developing trend of spectral polarization remote sensing are introduced. A novel method of spectral polarization imaging technique is discussed, which is based on static intensity modulation adding with double refraction crystal spectrometer. The static intensity modulation consists of two retarders and one polarizer. The double refraction crystal is used to generate interference image. The spectral and four Stokes vectors information can be obtained only by one measurement. The method of static intensity modulation is deduced in detail and is simulated by computer. The spectropolarimeter experimental system is also established in the laboratory. The basic concept of the technique is verified.展开更多
In this paper, we propose two joint transmit-receive iterative algorithms without the cooperation between different base stations based on the idea of interference alignment (IA) to improve the throughput of relay bac...In this paper, we propose two joint transmit-receive iterative algorithms without the cooperation between different base stations based on the idea of interference alignment (IA) to improve the throughput of relay backhaul links in cellular networks for the case of imperfect channel knowledge,which can be implemented with small changes to existing TD-LTE standards. Unlike the previous interference alignment algorithms' only reducing the sum interference to the other receivers at the transmitter or the sum received Multi-user interference (MUI) at the receiver, our algorithm shapes the transmission of each data stream at transmitters in order not only to minimize interference to the other users, but also to minimize the interference between different streams objected to the same user, suppressing the MUI and Multi-stream interference (MSI) at receivers. The proposed algorithm I is to maximize the SINR at receivers. But the complexity is relatively high. Algorithm II only needs linear operations and sacrifices a little performance for much lower complexity compared to the Maximize SINR iterative algorithm which needs the inversion operation of matrix. It is also proved that the algorithm converges monotonically. The simulation results show that the techniques have considerable performance gain compared with the previous algorithms. Further research about power allocation is also discussed.展开更多
Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal ...Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal antennas were correlated with the data received from the Vertically Polarized Antennas (VPAs) to estimate and cancel the interference adaptively in the VPAs. Suppressing the interference after each coherent integration time interval, about 25 dB signal-to-interference ratio is expected with the experimentally derived data.展开更多
Collective cells are organized to form specific patterns which play important roles in various physiological and pathological processes, such as tissue morphogenesis, wound healing, and cancer invasion. Compared to si...Collective cells are organized to form specific patterns which play important roles in various physiological and pathological processes, such as tissue morphogenesis, wound healing, and cancer invasion. Compared to single cell behaviors, which has been intensively studied from many aspects (cell migration, adhesion, polarization, proliferation, etc.) and at various scales (molecular, subcellular, and cellular), the multiple cell behaviors are relatively less understood, particularly in a quantitative manner. In this paper, we will present our recent studies of collective polarization and orientation of multiple cells through both experimental measurement and theoretical modeling, including those cell behaviors on/in 2D and 3D substrate/tissue. We find that the collective cell behaviors, including polarization, alignment and migration are closely related to local stress states in cell layer or tissue, which demonstrate the crucial roles of mechanical forces in the living organisms. Specifically, the cells prefer to polarize and align along the maximum principal stress in the cell layer, and the aspect ratio of cell increases with the in-plane maximum shear stress, suggesting that the maximum shear stress is the underlying driving force of cell polarization and orientation. This theory of stress-driven cell behaviors of polarization and orientation provides a new perspective for understanding cell behaviors in living organisms and the guideline for tissue engineering in biomedical applications.展开更多
Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic ...Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries.展开更多
In this paper, we exploit clustered interference alignment(IA) for efficient subchannel allocation in ultra-dense orthogonal frequency division multiplexing access(OFDMA) based femtocell networks, which notably improv...In this paper, we exploit clustered interference alignment(IA) for efficient subchannel allocation in ultra-dense orthogonal frequency division multiplexing access(OFDMA) based femtocell networks, which notably improves the spectral efficiency as well as addresses the feasibility issue of IA. Our problem is formulated as a combinatorial optimization problem which is NP-hard. To avoid obtaining its optimal solution by exhaustive search, we propose a two-phases efficient solution with low-complexity. The first phase groups all the femtocell user equipments(FUEs) into disjoint clusters, and the second phase allocates subchannels to the formed clusters where IA is performed. By doing this, the intra-cluster and inter-cluster interferences are mitigated by clustered IA and subchannel allocation in ultra-dense femtocell networks, respectively.Also, low-complexity algorithm is proposed to solve the corresponding sub-problem in each phase. Simulation results demonstrate that the proposed scheme not only outperforms other related schemes, but also provides a close performance to the optimal solution.展开更多
The occurrence of arc interference between the adjacent arcs becomes an important problem in triple-electrode high speed CO2 fillet welding. To clarify this problem, polarities effects on arc interference were investi...The occurrence of arc interference between the adjacent arcs becomes an important problem in triple-electrode high speed CO2 fillet welding. To clarify this problem, polarities effects on arc interference were investigated. The experimental results and theoretical analysis showed that the reverse magnetic field generated by the middle wire ( DCEN or DCEP ) decreased the arc deflection due to arc interference. The average arc voltage fluctuations induced by DCEP/DECN/DCEP and DCEN/DCEP/DCEN were smaller than those induced by the other polarities.展开更多
High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(...High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.展开更多
An interference alignment(IA)spectrum sharing method based on Rayleigh quotient is proposed for distributed multi-user multi-antenna cognitive radio(CR) networks.The interference from cognitive users(CUs)to the primar...An interference alignment(IA)spectrum sharing method based on Rayleigh quotient is proposed for distributed multi-user multi-antenna cognitive radio(CR) networks.The interference from cognitive users(CUs)to the primary(PR) system is constrained through the Rayleigh quotients of channel matrices to deal with the absence of PR users(PUs) in the IA process.As a result,the IA scheme can be applied in CR networks without harmful interference to PUs.Compared with existing IA based spectrum sharing methods,the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels of the PR system.Moreover,in comparison to other four spectrum sharing methods applicable in general scene,the proposed method leads to improved performance of achievable sum rate of the CR system as well as guarantees the transmission of PUs.展开更多
The cognitive multiple input multiple output( MIMO)network can utilize radio spectrum efficiently and satisfy the demand of high data rate. In order to decrease the interference during transmission,a new interference ...The cognitive multiple input multiple output( MIMO)network can utilize radio spectrum efficiently and satisfy the demand of high data rate. In order to decrease the interference during transmission,a new interference alignment( IA) algorithm based on cognitive MIMO networks is proposed in this paper. The algorithm is realized by designing two-level pre-coding, the first-level precoding aligns the interference generated by the cognitive users( CUs) to unused sub-channels of the primary user( PU),thereby eliminating the interference of CUs to PU; the second-level precoding is used to improve the throughput of CUs. Simulation shows that the proposed IA algorithm can eliminate the interference that the CUs produce on the PU and improve the throughput of CUs spontaneously.展开更多
Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that...Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that uses the interference color of high-order retarder films and encrypts one secret image into two encrypted images. In other words, this method can only encrypt one image at a time. In this paper, we propose a new method that encrypts two color images using interference color.展开更多
基金supported by the National Natural Science Foundation of China(6190149661871385)。
文摘The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.
基金supported in part by NSF of Shaanxi Province under Grant 2021JM-143the Fundamental Research Funds for the Central Universities under Grant JB211502+5 种基金the Project of Key Laboratory of Science&Technology on Communication Network under Grant 6142104200412the National Natural Science Foundation of China under Grant 62072351the Academy of Finland under Grant 308087,Grant 335262 and Grant 345072the Shaanxi Innovation Team Project under Grant 2018TD-007the 111 Project under Grant B16037,JSPS KAKENHI Grant Number JP20K14742the Project of Cyber Security Establishment with Inter University Cooperation.
文摘In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.
基金supported by the National Natural Science Foundation of China(62101415)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110757).
文摘Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.
文摘The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.
文摘This paper focuses on advanced analysis techniques and design considerations of DC interference generated by HVDC electrodes during normal bipolar and temporary monopolar operations on neighboring metallic utilities, with a special emphasis on buried gas and oil pipelines. This study examines the level of pipeline corrosion, the safety status in the vicinity of exposed appurtenances and the impact of DC interference on the integrity of insulating flanges and impressed current cathodic protection (ICCP) systems. Computation results obtained for different soil models show that different soils can lead to completely different DC interference effects. The results and conclusions presented here can be used as a reference to analyze the severity of DC interference on pipelines due to proximate HVDC electrodes.
文摘A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamically tracked by using Kalman estimator under variable environments with time. The polarization filter parameters are designed according to the polarization characteristic of the interference, and the polarization filtering is finished in the target cell. The system scheme of adaptive polarization filter is studied and the tracking performance of polarization filter and improvement of angle measurement precision are simulated. The research results demonstrate this technology can effectively suppress the angle cheating interference in guidance radar and is feasible in engineering.
文摘A new kind of tunable optical filter is proposed for DWDM optical communication application. It is based on cascaded polarization interference filter (PIF). The period and bandpass width of each PIF are decided by its optical path difference between o-ray and e-ray (OPDOE). When their OPDOEs are proportionately designed, the tuning range and bandpass width depend on OPDOE in the first and the last PIF, respectively. The tuning range, bandpass width and crosstalk are independent each other. The crosstalk is related to the OPDOE ratios among PIFs and can be suppressed by designing the PIF's OPDOE. A set of OPDOE is suggested that are l1, 2 × l1, 22 ×l1, 23 ×l1, 24 ×l1, ..., 2N-4 × l1, 15 × 2N-7 ×l1, 10 × 2N-6 × l1 and 2N-2 ×l1 from the first to the last. This suggested OPDOEs can yield -50-dB crosstalk for any tuning range and bandpass width. The insert loss is less than 1 dB. As its loose alignment requirement, there is no limitation on cascaded PIF number. When 11 PIFs are cascaded, it can achieve 170-nm tuning range, -50-dB crosstalk, bandpass width applicable to 25-GHz channel spacing and 1 dB insert loss.
文摘In this paper,we propose an ultrabroadband chiral metasurface(CMS)composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate.This innovative structure enables ultrabroadband and high-efficiency linear polarization(LP)conversion,as well as asymmetric transmission(AT)effect in the microwave region.The enhanced interference effect of the Fabry-Perot-like resonance cavity greatly expands the bandwidth and efficiency of LP conversion and AT effect.Through numerical simulations,it has been revealed that the cross-polarization transmission coefficients for normal forward(-z)and backward(+z)incidence exceed 0.8 in the frequency range of 4.13 to 17.34 GHz,accompanied by a polarization conversion ratio of over 99%.Furthermore,our microwave experimental results validate the consistency among simulation,theory,and measurement.Additionally,we elucidate the distinct characteristics of ultrabroadband LP conversion and significant AT effect through analysis of polarization azimuth rotation and ellipticity angles,total transmittance,AT coefficient,and electric field distribution.The proposed CMS structure shows excellent polarization conversion properties via AT effect and has potential applications in areas such as radar,remote sensing,and satellite communication.
文摘Some optical fiber hydrophones, such as PGC Mach-Zehnder Interferometer, have a birefringence of single mode optical fibers which induce signal fading. Especially, if two optical beams from the optical arms are orthogonal, the interferomic signal can’t be detected at all. Here a new method is introduced. This is to translate the detected phase difference into a linearly polarized angle, then detect it, so that polarization inducing signal fading will be avoided. In theory, this problem is solved. Furthermore, the effect on measurement results from optical source fluctuation becomes little when using the polarization technique.
文摘The mechanism and characteristics of spectral polarization imaging technique are presented. The present research and developing trend of spectral polarization remote sensing are introduced. A novel method of spectral polarization imaging technique is discussed, which is based on static intensity modulation adding with double refraction crystal spectrometer. The static intensity modulation consists of two retarders and one polarizer. The double refraction crystal is used to generate interference image. The spectral and four Stokes vectors information can be obtained only by one measurement. The method of static intensity modulation is deduced in detail and is simulated by computer. The spectropolarimeter experimental system is also established in the laboratory. The basic concept of the technique is verified.
基金Sponsored by the Important National Science & Technology Specific Projects of China (Grant No. 2009ZX03004-001)the Cooperation Project with Huawei Technologies Company (Grant No. YBWL2010242)
文摘In this paper, we propose two joint transmit-receive iterative algorithms without the cooperation between different base stations based on the idea of interference alignment (IA) to improve the throughput of relay backhaul links in cellular networks for the case of imperfect channel knowledge,which can be implemented with small changes to existing TD-LTE standards. Unlike the previous interference alignment algorithms' only reducing the sum interference to the other receivers at the transmitter or the sum received Multi-user interference (MUI) at the receiver, our algorithm shapes the transmission of each data stream at transmitters in order not only to minimize interference to the other users, but also to minimize the interference between different streams objected to the same user, suppressing the MUI and Multi-stream interference (MSI) at receivers. The proposed algorithm I is to maximize the SINR at receivers. But the complexity is relatively high. Algorithm II only needs linear operations and sacrifices a little performance for much lower complexity compared to the Maximize SINR iterative algorithm which needs the inversion operation of matrix. It is also proved that the algorithm converges monotonically. The simulation results show that the techniques have considerable performance gain compared with the previous algorithms. Further research about power allocation is also discussed.
文摘Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal antennas were correlated with the data received from the Vertically Polarized Antennas (VPAs) to estimate and cancel the interference adaptively in the VPAs. Suppressing the interference after each coherent integration time interval, about 25 dB signal-to-interference ratio is expected with the experimentally derived data.
基金the National Natural Science Foundation of China (Grants 11772055, 11532009, 11521062, 11372042).
文摘Collective cells are organized to form specific patterns which play important roles in various physiological and pathological processes, such as tissue morphogenesis, wound healing, and cancer invasion. Compared to single cell behaviors, which has been intensively studied from many aspects (cell migration, adhesion, polarization, proliferation, etc.) and at various scales (molecular, subcellular, and cellular), the multiple cell behaviors are relatively less understood, particularly in a quantitative manner. In this paper, we will present our recent studies of collective polarization and orientation of multiple cells through both experimental measurement and theoretical modeling, including those cell behaviors on/in 2D and 3D substrate/tissue. We find that the collective cell behaviors, including polarization, alignment and migration are closely related to local stress states in cell layer or tissue, which demonstrate the crucial roles of mechanical forces in the living organisms. Specifically, the cells prefer to polarize and align along the maximum principal stress in the cell layer, and the aspect ratio of cell increases with the in-plane maximum shear stress, suggesting that the maximum shear stress is the underlying driving force of cell polarization and orientation. This theory of stress-driven cell behaviors of polarization and orientation provides a new perspective for understanding cell behaviors in living organisms and the guideline for tissue engineering in biomedical applications.
基金support of National Key R&D Program of China (2021YFB3502500)Provincial Key Research and Development Program of Shandong (2019JZZY010312, 2021ZLGX01)+4 种基金Natural Science Foundation of Shandong Province (2022HYYQ-014)New 20 Funded Programs for Universities of Jinan (2021GXRC036)Qilu Young Scholar Program of Shandong University (31370082163127)the assistance of Shandong University Testing and Manufacturing Center for Advanced Materialssupport from the National Science Foundation Engineering Research Center for Power Optimization of Electro Thermal Systems (POETS) under Grant No. EEC 1449548.
文摘Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries.
基金supported by China Scholarship Council (201406960042)the National Science Foundation (91338115,61231008)+2 种基金National S&T Major Project (2015ZX03002006)Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the 111 Project (B08038)
文摘In this paper, we exploit clustered interference alignment(IA) for efficient subchannel allocation in ultra-dense orthogonal frequency division multiplexing access(OFDMA) based femtocell networks, which notably improves the spectral efficiency as well as addresses the feasibility issue of IA. Our problem is formulated as a combinatorial optimization problem which is NP-hard. To avoid obtaining its optimal solution by exhaustive search, we propose a two-phases efficient solution with low-complexity. The first phase groups all the femtocell user equipments(FUEs) into disjoint clusters, and the second phase allocates subchannels to the formed clusters where IA is performed. By doing this, the intra-cluster and inter-cluster interferences are mitigated by clustered IA and subchannel allocation in ultra-dense femtocell networks, respectively.Also, low-complexity algorithm is proposed to solve the corresponding sub-problem in each phase. Simulation results demonstrate that the proposed scheme not only outperforms other related schemes, but also provides a close performance to the optimal solution.
文摘The occurrence of arc interference between the adjacent arcs becomes an important problem in triple-electrode high speed CO2 fillet welding. To clarify this problem, polarities effects on arc interference were investigated. The experimental results and theoretical analysis showed that the reverse magnetic field generated by the middle wire ( DCEN or DCEP ) decreased the arc deflection due to arc interference. The average arc voltage fluctuations induced by DCEP/DECN/DCEP and DCEN/DCEP/DCEN were smaller than those induced by the other polarities.
基金The authors are grateful for the supports from the National Natural Science Foundation of China(U21A2093 and 52203100)Y.L.Zhang would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)。
文摘High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.
基金supported by National Natural Science Foundation of China under Grant 6120123361271262Fundamental Research Funds for the Central Universities (2013G1241114)
文摘An interference alignment(IA)spectrum sharing method based on Rayleigh quotient is proposed for distributed multi-user multi-antenna cognitive radio(CR) networks.The interference from cognitive users(CUs)to the primary(PR) system is constrained through the Rayleigh quotients of channel matrices to deal with the absence of PR users(PUs) in the IA process.As a result,the IA scheme can be applied in CR networks without harmful interference to PUs.Compared with existing IA based spectrum sharing methods,the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels of the PR system.Moreover,in comparison to other four spectrum sharing methods applicable in general scene,the proposed method leads to improved performance of achievable sum rate of the CR system as well as guarantees the transmission of PUs.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.12ZZ126)the Program of Shanghai Normal University,China(No.DZL126)
文摘The cognitive multiple input multiple output( MIMO)network can utilize radio spectrum efficiently and satisfy the demand of high data rate. In order to decrease the interference during transmission,a new interference alignment( IA) algorithm based on cognitive MIMO networks is proposed in this paper. The algorithm is realized by designing two-level pre-coding, the first-level precoding aligns the interference generated by the cognitive users( CUs) to unused sub-channels of the primary user( PU),thereby eliminating the interference of CUs to PU; the second-level precoding is used to improve the throughput of CUs. Simulation shows that the proposed IA algorithm can eliminate the interference that the CUs produce on the PU and improve the throughput of CUs spontaneously.
文摘Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that uses the interference color of high-order retarder films and encrypts one secret image into two encrypted images. In other words, this method can only encrypt one image at a time. In this paper, we propose a new method that encrypts two color images using interference color.