The rs10954213 polymorphism and the haplotype diversity in interferon regulatory factor 5 (1RF5) play a special role in systemic lupus erythematosus (SLE) but with inconclusive results. We conducted a meta-analysi...The rs10954213 polymorphism and the haplotype diversity in interferon regulatory factor 5 (1RF5) play a special role in systemic lupus erythematosus (SLE) but with inconclusive results. We conducted a meta-analysis integrating case-control and haplotype variant studies in multiple ethnic populations to clearly discern the effect of these two variants on SLE. Eleven studies on the relation between rs10954213 polymorpisms in IRF5 and SLE were included and we selected a random effect model to calculate the pooled odds ratios (ORs) and the corresponding 95% confidence interval (95% CI). A total of 6982 cases and 8077 controls were involved in the meta-analysis. The pooled results in- dicated that A allele was significantly associated with increased risk of SLE as compared with the IRF5 rS10954213 G allele (A vs. G, P〈0.00001) in all subjects. The same pattern of the results was also ob- tained in the European, African American, and Latin American. Asian population had a much lower prevalence of the A allele (49.1%) than any other population studied, and Europeans had the highest frequency of the IRF5 rs10954213 A allele (62.1%). The significant association of increased SLE risk and TCA haplotype was indicated in the contrast of TCA vs. TTA as the pooled OR was 2.14 (P=0.002). The same result was also found in the contrast of TCA vs. TTG as the pooled OR was 1.45 (P=-0.004). This meta-analysis suggests that the A allele of rs10954213 and TCA haplotype (rs2004640-rs2070197-rs10954213) in IRF5 is associated with the increased risk of SLE in different ethnic groups, and its prevalence is ethnicity dependent.展开更多
Heart diseases are the main cause of mortality in Mexico, being coronary </span><span style="font-family:Verdana;">heart disease the most frequent in the country. Its high prevalence makes i...Heart diseases are the main cause of mortality in Mexico, being coronary </span><span style="font-family:Verdana;">heart disease the most frequent in the country. Its high prevalence makes important </span><span style="font-family:Verdana;">the study of the pathophysiology and the search for prognostic </span><span style="font-family:Verdana;">factors. Different genes and polymorphisms promote atherogenesis and coronary artery disease, they affect inflammatory and vascular pathological processes. </span><span style="font-family:Verdana;">Interferon regulatory factor 5 (IRF5) is associated with coronary heart disease, it promotes chronic inflammation and cytokines release;it could trigger immune reactions and its activating receptors express in the vascular endothelium. Besides, polymorphisms in the renin-angiotensin-aldosterone system (RAAS) are implied with coronary disease, they are found in angiotensinogen (AGT), angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), and angiotensin-converting enzyme (ACE) genes. These genetic polymorphisms are associated with a prothrombotic state, endothelial dysfunction, and immune activation. Multiple experimental studies showed that chronic activation of RAAS and chronic expression of IRF5 generates an environment prone to the development of atherosclerosis, and autoimmune and cardiovascular diseases. Studying these specific genes and their relationship with coronary heart disease will allow a better understanding of the pathological process and possibly the quest for new treatments.展开更多
As one member of winged helix domain transcription factors, FoxD5 was reported to be a trunk organizer. Recent study showed that zebrafish foxd5 is expressed in the somites. To further understand the function of FoxD5...As one member of winged helix domain transcription factors, FoxD5 was reported to be a trunk organizer. Recent study showed that zebrafish foxd5 is expressed in the somites. To further understand the function of FoxD5 in fish muscle development, the FoxD5 gene was isolated from flounder. Its expression pattern was analyzed by in situ hybridization, while its function in regulating myogenic regulatory factor, MyoD, was analyzed by ectopic expression. It showed that flounder FoxD5 was firstly expressed in the tailbud, adaxial cells, and neural plate of the head. In flounder embryo, FoxD5 is expressed not only in forebrain but also in somite cells that will form muscle in the future. When flounder FoxD5 was over-expressed in zebrafish by microinjection, the expression of zebrafish MyoD in the somites was reduced, suggesting that FoxD5 is involved in myogenesis by regulating the expression of MyoD.展开更多
Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation,...Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation, hematopoietic differentiation, cell cycle regulation and oncogenesis. We have done molecular sub-cloning and expression of recombinant murine IRF-2 as GST (Glutathione-S-Transferase)- IRF-2 fusion protein in E. coli/XL-1blue cells. Recombinant IRF-2 with GST moiety at N-terminus expressed as GST-IRF-2 (~66 kd) in E. coli along with different low molecular mass degradation products revealed approximately 30, 42, 60 and 62 kd by SDS-PAGE and Western blot, respectively. We further confirm that degradation takes place at C-terminus of the fusion protein not at N-terminus as anti-GST antibody was detecting all bands in the immunoblot. The recombinant IRF-2 was biologically active along with their degradation products in terms of their DNA binding activity as assessed by Electrophoretically Mobility Shift Assay (EMSA). We observed three different molecular mass DNA/protein complexes (1 - 3) with Virus Response Element (VRE) derived from human Interferon IFNβ gene and five different molecular mass complexes (1 - 5) with IRF-E motif (GAAAGT)4 in EMSA gel. GST only expressed from empty vector did not bind to these DNA elements. To confirm that the binding is specific, all complexes were competed out completely when challenged with 100-X fold molar excess of IRF-E oligo under cold competition. It means degradation products along with full-length protein are able to interact with VREβ as well as IRF-E motif. This means degradation products may regulate the target gene (s) activation/repression via interacting with VRE/IRF-E.展开更多
AIM To investigate the role of interferon regulatory factor 5(IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis(SAP) in vitro.METHODS A mouse SAP model was established by intraperito...AIM To investigate the role of interferon regulatory factor 5(IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis(SAP) in vitro.METHODS A mouse SAP model was established by intraperitoneal(ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detectedby fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction(RT-PCR). They were treated with IL-4/IRF5 specific siR NA(IRF5 siR NA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RTPCR.RESULTS SAP associated acute lung injury(ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siR NA reversed the action of macrophages from M1 to M2 phenotype in vitro. The expressions of M1 markers, including IRF5(S + IRF5 siR NA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α(S + IRF5 siR NA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iN OS(S + IRF5 siR NA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12(S + IRF5 si RNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10(S + IRF5 siR NA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1(S + IRF5 siR NA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 si RNA could reverse the lung macrophage polarization more effectively than IL-4.CONCLUSION Treatment with IRF5 siR NA can reverse the pancreatitisinduced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI.展开更多
基金supported by the Program for New Century Excellent Talents from the Ministry of Education of China (No.NCET-09-0390)
文摘The rs10954213 polymorphism and the haplotype diversity in interferon regulatory factor 5 (1RF5) play a special role in systemic lupus erythematosus (SLE) but with inconclusive results. We conducted a meta-analysis integrating case-control and haplotype variant studies in multiple ethnic populations to clearly discern the effect of these two variants on SLE. Eleven studies on the relation between rs10954213 polymorpisms in IRF5 and SLE were included and we selected a random effect model to calculate the pooled odds ratios (ORs) and the corresponding 95% confidence interval (95% CI). A total of 6982 cases and 8077 controls were involved in the meta-analysis. The pooled results in- dicated that A allele was significantly associated with increased risk of SLE as compared with the IRF5 rS10954213 G allele (A vs. G, P〈0.00001) in all subjects. The same pattern of the results was also ob- tained in the European, African American, and Latin American. Asian population had a much lower prevalence of the A allele (49.1%) than any other population studied, and Europeans had the highest frequency of the IRF5 rs10954213 A allele (62.1%). The significant association of increased SLE risk and TCA haplotype was indicated in the contrast of TCA vs. TTA as the pooled OR was 2.14 (P=0.002). The same result was also found in the contrast of TCA vs. TTG as the pooled OR was 1.45 (P=-0.004). This meta-analysis suggests that the A allele of rs10954213 and TCA haplotype (rs2004640-rs2070197-rs10954213) in IRF5 is associated with the increased risk of SLE in different ethnic groups, and its prevalence is ethnicity dependent.
文摘Heart diseases are the main cause of mortality in Mexico, being coronary </span><span style="font-family:Verdana;">heart disease the most frequent in the country. Its high prevalence makes important </span><span style="font-family:Verdana;">the study of the pathophysiology and the search for prognostic </span><span style="font-family:Verdana;">factors. Different genes and polymorphisms promote atherogenesis and coronary artery disease, they affect inflammatory and vascular pathological processes. </span><span style="font-family:Verdana;">Interferon regulatory factor 5 (IRF5) is associated with coronary heart disease, it promotes chronic inflammation and cytokines release;it could trigger immune reactions and its activating receptors express in the vascular endothelium. Besides, polymorphisms in the renin-angiotensin-aldosterone system (RAAS) are implied with coronary disease, they are found in angiotensinogen (AGT), angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), and angiotensin-converting enzyme (ACE) genes. These genetic polymorphisms are associated with a prothrombotic state, endothelial dysfunction, and immune activation. Multiple experimental studies showed that chronic activation of RAAS and chronic expression of IRF5 generates an environment prone to the development of atherosclerosis, and autoimmune and cardiovascular diseases. Studying these specific genes and their relationship with coronary heart disease will allow a better understanding of the pathological process and possibly the quest for new treatments.
基金Supported by the Natural Science Foundation of Shandong Province,China(No.Y2008E12)the National Basic Research Program of China(973Program)(No.2010CB126304)
文摘As one member of winged helix domain transcription factors, FoxD5 was reported to be a trunk organizer. Recent study showed that zebrafish foxd5 is expressed in the somites. To further understand the function of FoxD5 in fish muscle development, the FoxD5 gene was isolated from flounder. Its expression pattern was analyzed by in situ hybridization, while its function in regulating myogenic regulatory factor, MyoD, was analyzed by ectopic expression. It showed that flounder FoxD5 was firstly expressed in the tailbud, adaxial cells, and neural plate of the head. In flounder embryo, FoxD5 is expressed not only in forebrain but also in somite cells that will form muscle in the future. When flounder FoxD5 was over-expressed in zebrafish by microinjection, the expression of zebrafish MyoD in the somites was reduced, suggesting that FoxD5 is involved in myogenesis by regulating the expression of MyoD.
文摘Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation, hematopoietic differentiation, cell cycle regulation and oncogenesis. We have done molecular sub-cloning and expression of recombinant murine IRF-2 as GST (Glutathione-S-Transferase)- IRF-2 fusion protein in E. coli/XL-1blue cells. Recombinant IRF-2 with GST moiety at N-terminus expressed as GST-IRF-2 (~66 kd) in E. coli along with different low molecular mass degradation products revealed approximately 30, 42, 60 and 62 kd by SDS-PAGE and Western blot, respectively. We further confirm that degradation takes place at C-terminus of the fusion protein not at N-terminus as anti-GST antibody was detecting all bands in the immunoblot. The recombinant IRF-2 was biologically active along with their degradation products in terms of their DNA binding activity as assessed by Electrophoretically Mobility Shift Assay (EMSA). We observed three different molecular mass DNA/protein complexes (1 - 3) with Virus Response Element (VRE) derived from human Interferon IFNβ gene and five different molecular mass complexes (1 - 5) with IRF-E motif (GAAAGT)4 in EMSA gel. GST only expressed from empty vector did not bind to these DNA elements. To confirm that the binding is specific, all complexes were competed out completely when challenged with 100-X fold molar excess of IRF-E oligo under cold competition. It means degradation products along with full-length protein are able to interact with VREβ as well as IRF-E motif. This means degradation products may regulate the target gene (s) activation/repression via interacting with VRE/IRF-E.
基金Supported by Graduate Innovative Projects in Jiangsu Province,No.1201270052Zhenjiang Science and Technology Program,No.SH2013032+2 种基金National Natural Science Foundation of China,No.81672348Six-Major-Peak-Talent Project of Jiangsu Province of China,No.2015-WSW-014the Scientific Research Fund for the Returned Overseas Chinese Scholars,State Ministry of Education,No.the 50th batch,2015
文摘AIM To investigate the role of interferon regulatory factor 5(IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis(SAP) in vitro.METHODS A mouse SAP model was established by intraperitoneal(ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detectedby fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction(RT-PCR). They were treated with IL-4/IRF5 specific siR NA(IRF5 siR NA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RTPCR.RESULTS SAP associated acute lung injury(ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siR NA reversed the action of macrophages from M1 to M2 phenotype in vitro. The expressions of M1 markers, including IRF5(S + IRF5 siR NA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α(S + IRF5 siR NA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iN OS(S + IRF5 siR NA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12(S + IRF5 si RNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10(S + IRF5 siR NA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1(S + IRF5 siR NA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 si RNA could reverse the lung macrophage polarization more effectively than IL-4.CONCLUSION Treatment with IRF5 siR NA can reverse the pancreatitisinduced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI.