AIM To assess the effects of hepatitis E virus(HEV) on the production of type Ⅰ interferons(IFNs) and determine the underlying mechanisms.METHODS We measured the production of interferon(IFN)-alpha and-beta(-α/β) i...AIM To assess the effects of hepatitis E virus(HEV) on the production of type Ⅰ interferons(IFNs) and determine the underlying mechanisms.METHODS We measured the production of interferon(IFN)-alpha and-beta(-α/β) in genotype 3 HEV-infected C3 A cells at different time points(0, 8, 12, 24, 48, 72 and 120 h) by enzyme-linked immunosorbent assay(ELISA). The expression levels of IFN-stimulated gene(ISG)15 in HEVinfected C3A cells at different time points were tested by western blotting. The plasmid-expressing open reading frame 3(ORF3) or control plasmids(green fluorescent protein-expressing) were transfected into C3A cells, and the levels of IFN-α/β and ISG15 were evaluated, respectively. Furthermore, the plasmid-expressing ISG15 or small interfering RNA-inhibiting ISG15 was transfected into infected C3A cells. Then, the production of IFN-α/β was also measured by ELISA.RESULTS We showed that genotype 3 HEV could enhance the production of IFN-α/β and induce elevation of ISG15 in C3A cells. HEV ORF3 protein could enhance the production of IFN-α/β and the expression of ISG15. Additionally, ISG15 silencing enhanced the production of IFN-α/β. Overexpression of ISG15 resulted in the reduction of IFN-α/β.CONCLUSION HEV may promote production of IFN-α/β and expression of ISG15 via ORF3 in the early stages, and increased ISG15 subsequently inhibited the production of IFN-α/β.展开更多
Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at...Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized.展开更多
Poly(ADP-ribose) polymerase 1 (PARP1) plays important roles in the regulation of transcription factors. Mounting evidence has shown that inhibition of PARP1 influences the expression of genes associated with inflammat...Poly(ADP-ribose) polymerase 1 (PARP1) plays important roles in the regulation of transcription factors. Mounting evidence has shown that inhibition of PARP1 influences the expression of genes associated with inflammatory response. Interferon regulatory factor 1 (IRF1) is a critical transcription factor for the development of both the innate and adaptive immune responses against infections. However, the molecular mechanism through which PARP1 mediates the effects has not been clearly demonstrated. Jurkat cells were exposed to dexamethasone (Dex) or PARP1 inhibitor PJ34. The expression levels of IL-12, LMP2, OAS1 and PKR were detected using real-time RT-PCR. The interactions between PARP1 and IRF1 were examined by coimmunoprecipitation (co-IP) assays. We further explored the mechanism of PARP1 suppressing IRF1 by assessing the activities of interferon stimulated response element (ISRE). The mRNA expression of IL-12, LMP2, OAS1 and PKR was obviously suppressed by Dex in Jurkat cells, which could be rescued by PJ34 treatment. Luciferase study revealed that poly(ADP-ribosyl)- ation suppressed IRF1-mediated transcription through preventing the binding of IRF1 to ISREs. PARP1 inhibited IRF1-mediated transcription in Jurkat cells by preventing IRF1 binding to ISREs in the promoters of target genes. It is suggested that PARP1 is a crucial regulator of IRF1-mediated immune response. This study provides experimental evidence for the possible application of PARP1 inhibitors in the treatment of IRF1-related immune anergy.展开更多
基金Supported by the National Natural Science Foundation of China,No.81570540
文摘AIM To assess the effects of hepatitis E virus(HEV) on the production of type Ⅰ interferons(IFNs) and determine the underlying mechanisms.METHODS We measured the production of interferon(IFN)-alpha and-beta(-α/β) in genotype 3 HEV-infected C3 A cells at different time points(0, 8, 12, 24, 48, 72 and 120 h) by enzyme-linked immunosorbent assay(ELISA). The expression levels of IFN-stimulated gene(ISG)15 in HEVinfected C3A cells at different time points were tested by western blotting. The plasmid-expressing open reading frame 3(ORF3) or control plasmids(green fluorescent protein-expressing) were transfected into C3A cells, and the levels of IFN-α/β and ISG15 were evaluated, respectively. Furthermore, the plasmid-expressing ISG15 or small interfering RNA-inhibiting ISG15 was transfected into infected C3A cells. Then, the production of IFN-α/β was also measured by ELISA.RESULTS We showed that genotype 3 HEV could enhance the production of IFN-α/β and induce elevation of ISG15 in C3A cells. HEV ORF3 protein could enhance the production of IFN-α/β and the expression of ISG15. Additionally, ISG15 silencing enhanced the production of IFN-α/β. Overexpression of ISG15 resulted in the reduction of IFN-α/β.CONCLUSION HEV may promote production of IFN-α/β and expression of ISG15 via ORF3 in the early stages, and increased ISG15 subsequently inhibited the production of IFN-α/β.
基金Supported by National Natural Science Foundation of China to Pei RJ and Chen XC,Nos.31200135 and 31200699German Research Foundation to Lu MG,Nos.TRR60,GK1045/2 and GK1949
文摘Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized.
基金This work was supported by the National Natural Science Foundation of China (No.81370263 and No.81500348).
文摘Poly(ADP-ribose) polymerase 1 (PARP1) plays important roles in the regulation of transcription factors. Mounting evidence has shown that inhibition of PARP1 influences the expression of genes associated with inflammatory response. Interferon regulatory factor 1 (IRF1) is a critical transcription factor for the development of both the innate and adaptive immune responses against infections. However, the molecular mechanism through which PARP1 mediates the effects has not been clearly demonstrated. Jurkat cells were exposed to dexamethasone (Dex) or PARP1 inhibitor PJ34. The expression levels of IL-12, LMP2, OAS1 and PKR were detected using real-time RT-PCR. The interactions between PARP1 and IRF1 were examined by coimmunoprecipitation (co-IP) assays. We further explored the mechanism of PARP1 suppressing IRF1 by assessing the activities of interferon stimulated response element (ISRE). The mRNA expression of IL-12, LMP2, OAS1 and PKR was obviously suppressed by Dex in Jurkat cells, which could be rescued by PJ34 treatment. Luciferase study revealed that poly(ADP-ribosyl)- ation suppressed IRF1-mediated transcription through preventing the binding of IRF1 to ISREs. PARP1 inhibited IRF1-mediated transcription in Jurkat cells by preventing IRF1 binding to ISREs in the promoters of target genes. It is suggested that PARP1 is a crucial regulator of IRF1-mediated immune response. This study provides experimental evidence for the possible application of PARP1 inhibitors in the treatment of IRF1-related immune anergy.