Rheumatoid arthritis(RA)is an autoimmune disease.Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility.However,accumulating evidence demonstrates that gene...Rheumatoid arthritis(RA)is an autoimmune disease.Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility.However,accumulating evidence demonstrates that genetics also shape the gut microbiota.It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis(CIA),while the others are resistant to CIA.Here,we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice.C57BL/6J mice and healthy human individuals have enriched B.fragilis than DBA/1J mice and RA patients.Transplantation of B.fragilis prevents CIA in DBA/1J mice.We identify that B.fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate.Fibroblast-like synoviocytes(FLSs)in RA are activated to undergo tumor-like transformation.Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1,resulting in reduced FOXK1 stability,blocked interferon signaling and deactivation of RA-FLSs.We treat CIA mice with propionate and show that propionate attenuates CIA.Moreover,a combination of propionate with anti-TNF etanercept synergistically relieves CIA.These results suggest that B.fragilis or propionate could be an alternative or complementary approach to the current therapies.展开更多
背景:程序性细胞死亡受体1(programmed death receptor-1,PD-1)在高糖环境下影响骨髓间充质干细胞成骨分化的作用机制尚不清楚。目的:探讨高糖环境中PD-1对大鼠骨髓间充质干细胞成骨分化的影响及其调控机制。方法:将大鼠骨髓间充质干细...背景:程序性细胞死亡受体1(programmed death receptor-1,PD-1)在高糖环境下影响骨髓间充质干细胞成骨分化的作用机制尚不清楚。目的:探讨高糖环境中PD-1对大鼠骨髓间充质干细胞成骨分化的影响及其调控机制。方法:将大鼠骨髓间充质干细胞随机分为正常糖组(5.6 mmol/L)、高糖组(30 mmol/L)、PD-1过表达组、PD-1过表达空载组、PD-1敲低组、PD-1敲低空载组、PI3K/AKT通路抑制剂组(PD-1敲低+5μmol/L LY294002)。通过在高糖培养基中培养大鼠骨髓间充质干细胞来模拟体外糖尿病环境,采用qRT-PCR检测大鼠骨髓间充质干细胞中PD-1及其配体PD-L1和成骨标志物Runx2、OSX的mRNA表达,采用碱性磷酸酶染色和茜素红S染色观察成骨分化能力,采用CCK-8检测细胞增殖情况,采用Western blot检测PD-1、PD-L1、p-PI3K、p-AKT的蛋白表达。结果与结论:①高糖组PD-1及PD-L1表达显著高于正常糖组,高糖组骨髓间充质干细胞的成骨分化能力较正常糖组显著下降;②敲低PD-1表达可以促进骨髓间充质干细胞的成骨分化、增加细胞增殖活性,同时激活PI3K/AKT通路;③加入PI3K/AKT通路抑制剂LY294002后,骨髓间充质干细胞成骨分化能力显著下降。结果表明:PD-1依赖于PI3K/AKT信号通路抑制高糖环境下大鼠骨髓间充质干细胞的成骨分化。展开更多
Objective:To explore expression level of interferon-stimulated genes PKR,OAS1,MX1,and ISG15 in peripheral blood mononuclear cells of COVID-19 patients.Methods:In this study,changes in the expression of four interferon...Objective:To explore expression level of interferon-stimulated genes PKR,OAS1,MX1,and ISG15 in peripheral blood mononuclear cells of COVID-19 patients.Methods:In this study,changes in the expression of four interferon-stimulated genes(ISGs),including PKR,OAS1,MX1,and ISG15,in peripheral blood mononuclear cells of 45 COVID-19 patients with different severities were evaluated by real-time PCR method.Results:OAS1,MX1,PKR,and ISG15 were differently expressed in COVID-19 patients with different severity.The results showed that the expression of OAS1,MX1,PKR,and ISG15 genes was significantly(P=0.001)lower in severe patients.Conclusions:Weak and defective IFN response and subsequent disruption of ISGs may be associated with COVID-19 severity.展开更多
Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
The cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes(STING)signaling pathway has emerged as a key mediator of neuroinflammation.While current studies primarily attribute its effects to neurons and glial ce...The cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes(STING)signaling pathway has emerged as a key mediator of neuroinflammation.While current studies primarily attribute its effects to neurons and glial cells,emerging research suggests that cGAS-STING signaling may play a critical role in cerebral vasculature,particularly in brain endothelial cells.Therefore,studying the role 7of inflammation caused by the cGAS-STING pathway in brain endothelial cells could provide a more comprehensive understanding of neuroinflammatory disease and new avenues for therapeutic interventions.Here,we review the multifaceted role of global cGAS-STING signaling in various neurological and neuroinflammatory diseases and the potential contribution of cGAS-STING in brain endothelial cells.展开更多
Interferon-gamma(IFN-γ)plays a dual role in cancer;it is both a pro-and an antitumorigenic cytokine,depending on the type of cancer.The deregulation of the IFN-γcanonic pathway is associated with several disorders,i...Interferon-gamma(IFN-γ)plays a dual role in cancer;it is both a pro-and an antitumorigenic cytokine,depending on the type of cancer.The deregulation of the IFN-γcanonic pathway is associated with several disorders,including vulner-ability to viral infections,inflammation,and cancer progression.In particular,the interplay between lung adenocarcinoma(LUAD)and viral infections appears to exist in association with the deregulation of IFN-γsignaling.In this mini-review,we investigated the status of the IFN-γsignaling pathway and the expression level of its components in LUAD.Interestingly,a reduction in IFNGR1 expression seems to be associated with LUAD progression,affecting defenses against viruses such as severe acute respiratory syndrome coronavirus 2.In addition,alterations in the expression of IFNGR1 may inhibit the antiproliferative action of IFN-γsignaling in LUAD.展开更多
基金supported by the National Natural Science Foundation Council of China(82172386 and 81922081 to C.L.,82100943 to X.F.,82104216 to J.L.,and 82230081,82250710175 and 8226116039 to G.X.)the Department of Education of Guangdong Province(2021KTSCX104 to C.L.)+5 种基金the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund(Guangdong-Hong Kong-Macao Joint Lab)(2020B1212030006 to A.L.)the Guangdong Provincial Science and Technology Innovation Council Grant(2017B030301018 to G.X.)the Guangdong Basic and Applied Basic Research Foundation(2022A1515012164 to C.L.,and 2023A1515012000 to X.F.)the Science,Technology and Innovation Commission of Shenzhen(JCYJ20210324104201005 to C.L.,JCYJ20220530115006014 to X.F.,JCYJ20230807095118035 to J.L.,and JCYJ20220818100617036 to G.X.)the Hong Kong General Research Fund(12102722 to A.L.)the Hong Kong RGC Themebased Research Scheme(T12-201/20-R to A.L.).
文摘Rheumatoid arthritis(RA)is an autoimmune disease.Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility.However,accumulating evidence demonstrates that genetics also shape the gut microbiota.It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis(CIA),while the others are resistant to CIA.Here,we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice.C57BL/6J mice and healthy human individuals have enriched B.fragilis than DBA/1J mice and RA patients.Transplantation of B.fragilis prevents CIA in DBA/1J mice.We identify that B.fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate.Fibroblast-like synoviocytes(FLSs)in RA are activated to undergo tumor-like transformation.Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1,resulting in reduced FOXK1 stability,blocked interferon signaling and deactivation of RA-FLSs.We treat CIA mice with propionate and show that propionate attenuates CIA.Moreover,a combination of propionate with anti-TNF etanercept synergistically relieves CIA.These results suggest that B.fragilis or propionate could be an alternative or complementary approach to the current therapies.
基金the research council of Kerman University of Medical Sciences,Kerman,Iran(Grant Number:400000232).
文摘Objective:To explore expression level of interferon-stimulated genes PKR,OAS1,MX1,and ISG15 in peripheral blood mononuclear cells of COVID-19 patients.Methods:In this study,changes in the expression of four interferon-stimulated genes(ISGs),including PKR,OAS1,MX1,and ISG15,in peripheral blood mononuclear cells of 45 COVID-19 patients with different severities were evaluated by real-time PCR method.Results:OAS1,MX1,PKR,and ISG15 were differently expressed in COVID-19 patients with different severity.The results showed that the expression of OAS1,MX1,PKR,and ISG15 genes was significantly(P=0.001)lower in severe patients.Conclusions:Weak and defective IFN response and subsequent disruption of ISGs may be associated with COVID-19 severity.
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
基金partially supported by a grant(RF1AG059694)from the U.S.National Institutes of Healthby Polytrauma System of Care,VAPAHCS(to JL)。
文摘The cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes(STING)signaling pathway has emerged as a key mediator of neuroinflammation.While current studies primarily attribute its effects to neurons and glial cells,emerging research suggests that cGAS-STING signaling may play a critical role in cerebral vasculature,particularly in brain endothelial cells.Therefore,studying the role 7of inflammation caused by the cGAS-STING pathway in brain endothelial cells could provide a more comprehensive understanding of neuroinflammatory disease and new avenues for therapeutic interventions.Here,we review the multifaceted role of global cGAS-STING signaling in various neurological and neuroinflammatory diseases and the potential contribution of cGAS-STING in brain endothelial cells.
文摘Interferon-gamma(IFN-γ)plays a dual role in cancer;it is both a pro-and an antitumorigenic cytokine,depending on the type of cancer.The deregulation of the IFN-γcanonic pathway is associated with several disorders,including vulner-ability to viral infections,inflammation,and cancer progression.In particular,the interplay between lung adenocarcinoma(LUAD)and viral infections appears to exist in association with the deregulation of IFN-γsignaling.In this mini-review,we investigated the status of the IFN-γsignaling pathway and the expression level of its components in LUAD.Interestingly,a reduction in IFNGR1 expression seems to be associated with LUAD progression,affecting defenses against viruses such as severe acute respiratory syndrome coronavirus 2.In addition,alterations in the expression of IFNGR1 may inhibit the antiproliferative action of IFN-γsignaling in LUAD.