期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of pre-deformation on microstructure and properties of Al–Cu–Mg–Ag heat-resistant alloy 被引量:4
1
作者 LIU Xiao-yan WANG Zhao-peng +3 位作者 LI Qing-shuai ZHANG Xi-liang CUI Hao-xuan ZHANG Xiao-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1027-1033,共7页
The effects of the pre-deformation on the microstructure, mechanical properties and corrosion resistance of Al–Cu–Mg–Ag alloys were investigated by means of hardness tests, tensile tests, intergranullar corrosion (... The effects of the pre-deformation on the microstructure, mechanical properties and corrosion resistance of Al–Cu–Mg–Ag alloys were investigated by means of hardness tests, tensile tests, intergranullar corrosion (IGC) tests and transmission electron microscopy (TEM), respectively. The results show that with the increase of deformation amount, the aging hardening rate increases while the strength of the alloy decreases and then increases. The sample with a pre-deformation of 6% possesses the highest tensile strength due to the refinedly and homogeneously distributed precipitations. The pre-deformation aging accelerates the heterogeneous nucleation of Ω and θ′ phases at dislocations, and also refines the precipitations both in the grains and along the grain boundaries. The precipitation of Ω phase is restrained while that of θ′ phase is accelerated in pre-deformed Al–Cu–Mg–Ag alloy compared with the sample without pre-deformation. In addition, the width of the precipitate free zone decreases with increasing the pre-deformation amount, leading to a narrower IGC passageway. This results in an enhanced IGC resistance of Al–Cu–Mg–Ag alloy treated by pre-deformation aging. © 2017, Central South University Press and Springer-Verlag GmbH Germany. 展开更多
关键词 Alloys Aluminum Corrosion Corrosion resistance Deformation Dislocations (crystals) Grain boundaries High resolution transmission electron microscopy Microstructure NUCLEATION Precipitation (chemical) Silver Tensile strength Tensile testing Transmission electron microscopy
下载PDF
Atomistic origin of high grain boundary resistance in solid electrolyte lanthanum lithium titanate
2
作者 Shang Peng Yongjin Chen +7 位作者 Xuefeng Zhou Mingxue Tang Jianbo Wang Hua Wang Lin Guo Lujun Huang Wenge Yang Xiang Gao 《Journal of Materiomics》 SCIE CSCD 2024年第6期1214-1221,共8页
Lanthanum lithium titanate is one of the promising electrolytes for solid-state lithium-ion batteries due to its high bulk ionic conductivity up to∼10^(−3) S/cm.However,the practical application of this material has ... Lanthanum lithium titanate is one of the promising electrolytes for solid-state lithium-ion batteries due to its high bulk ionic conductivity up to∼10^(−3) S/cm.However,the practical application of this material has been bottlenecked by high grain boundary(GB)resistance,while the underlying mechanism is still under debate.Here we report a comprehensive study with direct evidence to reveal the origin of high GB resistance in La_(2/3)–xLi_(3x)TiO_(3)(LLTO).Atomic-scale observations via advanced scanning transmission electron microscopy show that the GBs are uniformly subject to subsurface segregation of La atoms to compensate for the excess surface charges.The La segregation leads to an abrupt decrease of charge carrier concentration neighboring GBs and hence is supposed to have deleterious effect on GB conductivity.The findings suggest a novel mechanism of space-charge-induced cation segregation,which shed lights on the intrinsic origin of low GB ionic conductivity in LLTO. 展开更多
关键词 SPACE-CHARGE layer CATION segregation intergranullar GLASSY film Solid-state electrolyte Ionic conductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部