期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
1
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si C particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures 被引量:4
2
作者 WANG Zhen-bo HAN Shuo +2 位作者 SUN Peng LIU Wei-kang WANG Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1459-1475,共17页
In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.F... In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance. 展开更多
关键词 engineered cementitious composites hybrid fiber basalt fiber mechanical properties elevated temperature
下载PDF
Effect of Hybridization on the Mechanical Properties of Pineapple Leaf Fiber/Kenaf Phenolic Hybrid Composites 被引量:4
3
作者 M.Asim M.Jawaid +2 位作者 K.Abdan M.R.Ishak O.Y.Alothman 《Journal of Renewable Materials》 SCIE 2018年第1期38-46,共9页
In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the... In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the PALF/KF/PF hybrid composites were investigated and compared with PALF/KF composites.The 3P7K exhibited enhanced tensile strength(46.96 MPa)and modulus(6.84 GPa),flexural strength(84.21 MPa)and modulus(5.81 GPa),and impact strength(5.39 kJ/m2)when compared with the PALF/PF and KF/PF composites.Scanning electron microscopy(SEM)was used to observe the fracture surfaces of the tensile testing samples.The microstructure of the 7P3K hybrid composite showed good interfacial bonding and the addition of KF improved the interfacial strength.It has been concluded that the 3P7K ratio allowed obtaining materials with better mechanical properties(tensile,flexural and impact strengths)than PALF/PF and KF/PF composites.The results obtained in this study will be used for further comparative study of untreated hybrid composites with treated hybrid composites. 展开更多
关键词 Pineapple leaf fiber kenaf fiber phenolic resin hybrid composites mechanical properties
下载PDF
Performance Improvement of Kenaf/Glass Polymer Hybrid Composites by Effective Application of Fish Scale Powder as Filler:A Novel Approach
4
作者 Chandrakanta Mishra Deepak Kumar Mohapatra +2 位作者 Chitta Ranjan Deo Chetana Tripathy Kiran Kumar Ekka 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期80-96,共17页
Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridi... Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridization of natural fibers with synthetic ones,along with the inclusion of a variety of biowaste filler for developing sustainable goods.In this work,the kenaf/glass hybrid polyester composites are strengthened by the addition of fish scale(FS),which is taken from the fishs outermost layer of skin.Five different stacked-order laminates,such as KKKK,KGKG,GKKG,KGGK,and GGGG,are fabricated by using the hand lay-up method with four different weight concentrations of filler content:0%,5%,10%,and 15%.Mechanical possessions such as tensile,flexural,impact strength and micro-hardness have been evaluated through experimentation in accordance with ASTM standards.The experimental findings revealed that,the tensile strength and micro-hardness value of KGKG laminates with 15wt% of FS filler are found to be maximum of 118.72 MPa and 17.82 HV respectively which are 39.67%and 26.11%greater than that of KGKG laminates without FS filler.However,the flexural and impact strength of same laminates with 10 wt% FS filler exhibited a maximum value of 142.77 MPa and 62.08 kJ/m^(2).In order to corroborate its applicability for structural and building materials in open environment,the dimensional stability of the composite has been studied through moisture absorption test.The influences of FS filler loading on dimensional stability and resistance to moisture absorption capacity of laminates are also investigated.The experimental results reflected that the addition of FS-filler has significantly improved the dimensional stability of the laminates in moist environment by reducing the moisture absorption tendency.To further support the mode of failures,a fractography investigation of fractured surfaces was conducted. 展开更多
关键词 fish scale fiber POLYESTER hybrid composites mechanical properties
下载PDF
Mechanical Properties of Phenolic-Resin Composites Reinforced with CF/BF Interlayer Hybrid Fibers
5
作者 李卫东 曹海琳 +1 位作者 陈国荣 史鹏飞 《Journal of Beijing Institute of Technology》 EI CAS 2010年第4期471-475,共5页
Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of th... Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of the prepared composites were studied.The results indicated that hybrid fibers reinforced composites possessed the advantages of both CF and BF.When resin content was 35% by volume fraction,the comprehensive mechanical performance of BF/CF reinforced phenolic resin composites reached the optimal values with the warp and weft direction tensile strength,compressive strength and interlayer shear strength being 252 MPa and 487 MPa,105 MPa and 129 MPa,21 MPa and 20 MPa,respectively.The scanning electron microscope(SEM) observations showed that the BF/CF hybrid fibers reinforced composites had better interfacial adhesion. 展开更多
关键词 hybrid fibers composite basalt fiber phenolic resin mechanical property
下载PDF
Effect of Fe content on microstructure and mechanical properties of Cu-Fe-based composite coatings by laser induction hybrid rapid cladding 被引量:1
6
作者 Sheng-feng ZHOU Jian-bo LEI +3 位作者 Zheng XIONG Jin-bo GUO Zhen-jie GU Hong-bo PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3196-3204,共9页
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser... To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate. 展开更多
关键词 composite coating laser induction hybrid rapid cladding Cu.Fe alloy liquid phase separation microstructure mechanical properties
下载PDF
The Effect of Water Absorption on Mechanical Properties of Wood Flour/Wheat Husk Polypropylene Hybrid Composites 被引量:1
7
作者 Pradeep Upadhyaya Manoj Garg +1 位作者 Vijai Kumar Ajay K. Nema 《Materials Sciences and Applications》 2012年第5期317-325,共9页
The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is on... The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is one of the draw- backs of natural fibers. Hybrid filler-polypropylene composites are subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Composites specimens containing 30 phr and 40 phr fiber weight were prepared by melt blending process. Water absorption tests were conducted by immersion specimens in distilled water at room temperature for different time durations (24, 48, 72, 96, 120, 144, 168, 192 hours). The tensile, flexural and impact properties were investigated before and after water absorption. The percentage of moisture uptake increased as the increasing order of the filler loading due to the high cellulose content. The phase morphology of wood flour/wheat husk polypropylene hybrid composites were investigated by SEM, the dynamic mechanical properties of the composite are analyzed by DMA & wheat, wood filler interaction are analyzed by FT-IR. 展开更多
关键词 hybrid POLYPROPYLENE compositeS WATER ABSORPTION mechanical PROPERTIES
下载PDF
A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites 被引量:3
8
作者 Jorge Neto Henrique Queiroz +3 位作者 Ricardo Aguiar Rosemere Lima Daniel Cavalcanti Mariana Doina Banea 《Journal of Renewable Materials》 SCIE EI 2022年第3期561-589,共29页
Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such ... Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such as low environmental impact and low cost.However,one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre.One method to increase their performance is hybridization.Therefore,understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest.This paper provides an overview of the recent advances in hybrid natural fiber reinforced polymer composites.First,the main factors that affect the performance of hybrid fiber-reinforced composites were briefly discussed.The effect of hybridization on the mechanical and thermal properties of hybrid composites reinforced with several types of natural fibers(i.e.,sisal,jute,curauá,ramie,banana,etc.)or natural fibers combined with synthetic fibers is pre-sented.Finally,the water absorption behaviour of hybrid fiber-reinforced composites is also discussed.It was con-cluded that the main challenges that need to be addressed in order to increase the use of natural-natural or natural-synthetic hybrid composites in industry are the poor adhesion between natural fibers and matrix,thermal stability and moisture absorption of natural fibers.Some of these challenges were addressed by recent develop-ment in fibers treatment and modification,and product innovation(hybridization). 展开更多
关键词 Natural fiber composites(NFC) hybrid composites mechanical properties thermal properties water absorption
下载PDF
Hybrid Composites of Phosphate Glass Fibre/Nano-Hydroxyapatite/Polylactide: Effects of Nano-Hydroxyapatite on Mechanical Properties and Degradation Behaviour
9
作者 Lizhe He Chenkai Zhu +1 位作者 Jiahao Wu Xiaoling Liu 《Journal of Materials Science and Chemical Engineering》 2018年第11期13-31,共19页
Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bon... Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bone-mimicking level of mechanical properties, which is an essential demand of the targeted application. In this study, the nano-hydroxyapatite/polylactide composites were used as the matrix and continuous phosphate glass fibres (PGF) served as the major reinforcement to obtain the nano-HA/PGF/PLA hybrid composites. While the PGF volume fraction remained constant (25%), the nano-HA content (in weight) varied from 0% to 20%. As nano-HA loading increased, the flexural modulus of the composites increased from 8.70 ± 0.35 GPa to 14.97 ± 1.30 GPa, and the flexural strengths were enhanced from 236.31 ± 10.83 MPa to 310.55 ± 22.88 MPa. However, it is found that the degradation rates are higher with more nano-HA loaded. Enhanced water absorption ability, as well as increased voids in the composites is possible reasons for the accelerated degradation of composites with higher nano-HA loading. The hybrid composites possess mechanical properties that are superior to most of the HA/PLA composites in previous research while maintaining the biodegradability. With a proper loading of nano-HA in composites of 10 weight percent, the composites are also found with improved mechanical properties without catastrophic degradation. The composites developed in this study have great potential as biodegradable bone fixation device with enhanced load-bearing ability as confirmed and superior bioactivity as anticipated. 展开更多
关键词 PHOSPHATE GLASS Fibres POLYLACTIDE HYDROXYAPATITE hybrid composites mechanical Properties
下载PDF
Preparation and mechanical properties of TLCP/ UP / GF in-situ hybrid composites
10
作者 于贤保 韦春 +3 位作者 陆绍荣 虞锦洪 徐灯 卢炽华 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期529-533,共5页
One kind of novel reactive thermotropic liquid crystalline polymer-methacryloyl copolymer (LCMC) containing polyester mesogenic units was synthesized. Its structure, morphology and properties were investigated systemi... One kind of novel reactive thermotropic liquid crystalline polymer-methacryloyl copolymer (LCMC) containing polyester mesogenic units was synthesized. Its structure, morphology and properties were investigated systemically by Ubbelohde viscometer, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffractometry (WAXD) and polarizing optical microscopy (POM). The results indicate that it is one kind of nematic thermotropic liquid crystal polymer (TLCP). The impact strength, bending strength and the morphologies of impact fracture surface of LCMC, unsaturated polyester (UP) and glass fiber (GF) in-situ hybrid composites were studied by Izod impact tester, universal testing machine and scanning electron microscopy (SEM), respectively. The results show that the impact and bending strength of composites containing LCMC are improved, especially the composites containing 5% LCMC increases most obviously. These results with SEM results reveal that LCMC plays an important role in the improvement of interfacial adhesive between matrix and fiber. 展开更多
关键词 现场杂化复合物 热致液晶聚合物 不饱和聚酯 制备 力学性质
下载PDF
Magnesium composites with hybrid nano-reinforcements:3D simulation of dynamic tensile response at elevated temperatures 被引量:5
11
作者 Xia ZHOU Zi-fan LIU +1 位作者 Feng SU Ya-fu FAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期636-647,共12页
3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 ... 3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 to 300℃ were carried out using a 3D representative volume element(RVE)approach.The simulation predictions were compared with the experimental results.It is clearly shown that the overall dynamic tensile properties of the nanocomposites at different temperatures are improved when the total volume fraction and volume fraction ratio of hybrid CNTs to SiC nanoparticles increase.The overall maximum hybrid effect is achieved when the hybrid volume fraction ratio of CNTs to SiC nanoparticles is in the range from 7:3 to 8:2 under the condition of total volume fraction of 1.0%.The composites present positive strain rate hardening and temperature softening effects under dynamic loading at high temperatures.The simulation results are in good agreement with the experimental data. 展开更多
关键词 magnesium matrix composites hybrid nanosized reinforcements dynamic mechanical properties numerical analysis
下载PDF
Effects of jute fibre content on the mechanical and dynamic mechanical properties of the composites in structural applications 被引量:1
12
作者 Suhad D.Salman 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1098-1105,共8页
Due to notable characteristics,sustainability concept and environmental issues,hybridisation natural with synthetic fibres to fabricate composites have been rapidly gaining market share in different applications(struc... Due to notable characteristics,sustainability concept and environmental issues,hybridisation natural with synthetic fibres to fabricate composites have been rapidly gaining market share in different applications(structural,military,aerospace and automotive vehicles).Compression,tension and fatigue tests of various stacking sequences of plain jute/carbon reinforced(PVB)polyvinyl butyral by hot hydraulic press technique were experimentally conducted.Six types of fabricated composites with various constituents(jute,carbon and their hybrids)were fabricated and tested.Notably,fatigue lifetime of hybrids increases with increasing the carbon content relative to the jute fibre content.On the other hand,Jute composites possess high strain compared to pure carbon composite,which gives an overall improvement in mechanical behaviours.Interestingly,H1 hybrid with Carbon/Jute/Carbon sequences offers similar fatigue stiffness behaviour of H3 hybrid with Carbon/Jute/Carbon/Jute sequences when subjected to cyclic loading.Carbon composite(C)exhibited the highest fatigue resistance,whiles jute composite(J)possessed the highest strain and semi brittle trends in both mechanical and fatigue performance.Results concluded that plain jute fibres could partially replace high-cost synthetic carbon fibres to produce more eco-friendly hybrids to be utilised in different composites industries. 展开更多
关键词 Plain woven JUTE Carbon fabric hybrid composite mechanical Cyclic loading MORPHOLOGICAL Fatigue properties
下载PDF
Mechanical properties and fractograph of SiC foam-SiC particles-Al composites 被引量:2
13
作者 赵龙志 赵明娟 +3 位作者 曹小明 田冲 胡宛平 张劲松 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期644-648,共5页
A new type of hybrid SiC foam-SiC particles-Al composites used as an electronic packaging substrate material were fabricated by squeeze casting technique. The mechanical properties and the fracture mechanism of the hy... A new type of hybrid SiC foam-SiC particles-Al composites used as an electronic packaging substrate material were fabricated by squeeze casting technique. The mechanical properties and the fracture mechanism of the hybrid composites were investigated. The influence of SiC particles and foam hybrid reinforcement on the behavior of the composites was studied. The results show that the interface bonding in the hybrid composites is good for the composites with the unique double interpenetrating structure. The compressive strength of the hybrid composite reinforced by the SiC with the volume fraction of 59.9% is 680 MPa,which is higher than that of any other composites with the same volume fraction of SiC particles reinforcement. 展开更多
关键词 碳化硅 复合物 机械性能 断口组织
下载PDF
Microstructures and properties of graphite and Al2O3 short fibers reinforced Mg-Al-Zn alloy hybrid composites 被引量:2
14
作者 杨晓红 刘勇兵 +1 位作者 宋起飞 安健 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期1-5,共5页
关键词 金属复合材料 Mg-Al-Zn合金 AL2O3短纤维 石墨 显微结构 力学性质
下载PDF
The Reinforcing Effect of Graphene on the Mechanical Properties of Carbon-Epoxy Composites 被引量:1
15
作者 Hadimani Shivakumar N. M. Renukappa +1 位作者 K. N. Shivakumar B. Suresha 《Open Journal of Composite Materials》 2020年第2期27-44,共18页
Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this stud... Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites. 展开更多
关键词 GRAPHENE NANOPLATELETS Carbon Fabric/Epoxy hybrid composite Physico-mechanical Properties Impact STRENGTH
下载PDF
Development of Hybrids Composites of Carbon and Aramid Fibers to Reinforce Matrix of Epoxy Resins Part I
16
作者 Arnaldo Carlos Morelli Jose Antonio Garcia Croce +1 位作者 Célio Caminaga Letícia R.Timarco 《材料科学与工程(中英文B版)》 2018年第2期86-89,共4页
Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,wh... Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,which consist of epoxy resin matrixes and carbon fibers,which presents low impact resistance.Our goal was the development and characterization of a hybrid material composed of two kinds of fibers,carbon and Kevlar,in the fabric format,joined by epoxy resin matrix.The standard composition is the Composition 1:containing 55%-60%carbon fiber and 40%-45%epoxy resin.The hybrid composite is the Composition 2:that contains 30%-33%carbon fiber,25%-27%Kevlar fiber and 40%-45%of epoxy resin.The composite plates were prepared using a laminator machine and later they were process in a vacuum bag and cured in oven.The study aimed at comparing the physical and mechanical properties of these materials.The mechanical tests were focus on measurements of the tensile,flexural and impact charpy stresses,and physics tests by measures of bulk densities.Through these procedures,we hope to find out data that may be useful for a partial characterization of these products for applications in the aerospace industry. 展开更多
关键词 hybrid compositeS fibers Kevlar/carbon physical and mechanics properties
下载PDF
Dynamic mechanical behavior and nonlinear hyper-viscoelastic constitutive model of SiO_(2) particle-reinforced silicone rubber composite:experimental and numerical investigation
17
作者 Xihuang Zhang Xuexing Wu +4 位作者 He Yang Ying Chen Xiangli Cheng Bo Liu Hui Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第6期100-114,共15页
SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a compreh... SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a comprehensive investigation of the mechanical behavior of SP-RSRC under various strain rates,employing a combination of experimental,theoretical,and numerical analyses.Firstly,quasi-static and dynamic compression tests were performed on SP-RSRC utilizing a universal testing machine and split Hopkinson pressure bar(SHPB)apparatus.Nonlinear stress-strain relationships of SP-RSRC were obtained for strain rates ranging from 1×10^(−3) to 3065 s^(−1).The results indicated that the composite showed evident strain rate sensitivity,along with nonlinearity.Then,a nonlinear visco-hyperelastic constitutive model was developed,consisting of a hyperelastic component utilizing the 3rd-order Ogden energy function and a viscous component employing a rate-dependent relaxation time scheme.The model accurately characterized the dynamic mechanical response of SP-RSRC,effectively mitigating the challenge of calibrating an excessive number of material parameters inherent in conventional viscoelastic models.Furthermore,the simplified rubber material(SRM)model,integrated within the LS-DYNA software,was chosen to depict the mechanical properties of SP-RSRC in numerical simulations.The parameters of the SRM model were further calibrated based on the strain-stress relationships of SP-RSRC,as predicted by the developed nonlinear visco-hyperelastic constitutive model.Finally,an inverse ballistic experiment using a single-stage air gun was conducted for SP-RSRC.Numerical simulations of SHPB experiments and the inverse ballistic experiment were then performed,and the reliability of the calibrated SRM model was verified by comparing the results of experiments and numerical simulations.This study offers a valuable reference for the utilization of SP-RSRC in the realm of impact protection. 展开更多
关键词 Silicone rubber composites Dynamic mechanical properties Nonlinear visco-hyperelastic constitutive model Inverse ballistic experiment
原文传递
Cementitious Composites Containing Multifunctional Sugarcane Fibres
18
作者 Viviane VSGuilarduci Patricia Benedini Martelli +2 位作者 Honória de Fátima Gorgulho Pablo Resende Oliveira Tulio Hallak Panzera 《Journal of Building Material Science》 2019年第2期1-8,共8页
This work investigates the reuse of natural(SCB)and minopropyltriethoxysilanemodifed(MSCB)sugarcane bagasse fbres in cementitious composites.ugarcane bagasse fbres are pre-used in the treatment of motor oil contaminat... This work investigates the reuse of natural(SCB)and minopropyltriethoxysilanemodifed(MSCB)sugarcane bagasse fbres in cementitious composites.ugarcane bagasse fbres are pre-used in the treatment of motor oil contaminated effluents.A full factorial design is used to identify the effects of fbre type(SCB and MSCB),fbre length(0.6 and 1.2 mm),fbre amount(1 and 2 wt%)and fbre condition(before and after oil filtration)on apparent density,water absorption,apparent porosity,ultra-pulse velocity,dynamic modulus,flexural strength and modulus.SCB fibres lead to increased apparent density compared to MSCB fibre reinforced composites.MSCB fibres contribute to reduce composite porosity,leading to higher mechanical properties.The smaller area of MSCB fibres promotes a larger amount of cementitious phase per unit volume,thus increasing the strength of the sample.Longer sugarcane fbres(1.2 mm)have a larger surface area,leading to a higher fibre concentration per unit volume,which increases water absorption.The amount of fibre has no significant effect on mechanical and physical responses.Composites made with 2 wt%0.6 mm long MSCB fibres achieve promising results for non-structural civil engineering applications. 展开更多
关键词 Sugarcane bagasse Treatment of effluents Chemical treatment Cementitious composites mechanical properties Non-destructive test Design of experiment
下载PDF
Hybrid Bio-based Composites from Waste Chicken Feather and Betel Nut Fiber: A Study on the Mechanical and Thermal Properties
19
作者 Gitashree Gogoi Chayanika Chowdhury Tarun K.Maji 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期268-277,共10页
The present work is an attempt to develop bio-based hybrid composites by incorporating Betel nut Fiber(BF)and Chicken feather Fiber(CF)at different ratios in modified soybean oil matrix by compression molding techniqu... The present work is an attempt to develop bio-based hybrid composites by incorporating Betel nut Fiber(BF)and Chicken feather Fiber(CF)at different ratios in modified soybean oil matrix by compression molding technique.The ratio of the fiber and resin was taken as 30:70.Epoxidised soybean oil(ESO)was modified by using methacrylic acid and methacrylic anhydride.The ratio of CF and BF was varied from 2:1 to 1:2 respectively.The influence of hybrid fibers and fiber ratio on various properties of the composites was investigated.The obtained results showed that composites prepared with 1:1 ratio of CF and BF exhibited highest tensile strength compared to the other composites prepared by using different ratios of CF and BF.The surface morphology of the composites was studied by Scanning Electron Microscopy(SEM),where surface roughness was found to be decreased after incorporation of hybrid fibers.Thermogravimetric analysis was carried out to study the behaviour of the composites at high temperature,where thermal stability was found to enhance for hybrid composites compared to the composites prepared with single fibers.Also properties like water vapour uptake capacity and volumetric swelling were measured and found to be decreased for the hybrid composites.An overall improvement in properties was observed for composites having 1:1 ratio of CF:BF.Hence,it is concluded that 1:1 weight ratio of CF and BF is the optimum mixing ratio to enhance the various properties of the hybrid composites. 展开更多
关键词 hybrid composites Betel nut fiber Chicken feather fiber mechanical properties Thermal properties
原文传递
Effect of aging treatment on mechanical properties of (SiCw+SiCp)/2024Al hybrid nanocomposites 被引量:5
20
作者 耿林 张雪囡 +2 位作者 王桂松 郑镇洙 徐彬 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期387-391,共5页
2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of Si... 2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of SiC nanoparticle is 2%, 5% and 7%, respectively. The as cast composites were solution treated followed by aging treatment. The experimental results show that the SiC nanoparticles are more effective in improving the hardness and tensile strength of the composites than SiC whiskers. The hardening kinetics of the composites is enhanced by reinforcements addition and the peak aging time is 4-5 h. The hardness of all the hybrid composite decreases at the initial aging stage, suggesting that dislocation recovery softening process coexists with precipitation hardening. DSC study shows that the GP zone formation of the hybrid composites is suppressed. 展开更多
关键词 (SiCw+SiCp)/2024Al SiCw/2024Al SiCo/2024Al 退火 机械性能 显微结构 纳米复合材料
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部