期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A numerical investigation of gas flow behavior in two-layered coal seams considering interlayer interference and heterogeneity 被引量:3
1
作者 Ziwei Wang Yong Qin +1 位作者 Teng Li Xiaoyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期699-716,共18页
Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on p... Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on physical experiments.Through calibration,the simulated results agreed with the experimental results.Three findings were obtained.First,the pressure distribution intrinsically depends on the depressurization effectiveness in each coal seam.The gas pressure difference and interval distance influence the pressure distribution by inhibiting depressurization in the top seams and bottom seams,respectively.Second,the production contribution shows a logarithmic relationship with the permeability ratio.The range of the production contribution difference grows from 11.24%to 99.99%when the permeability ratio increases 50 times.By comparison,reservoir pressure has a limited influence,with a maximum of 13.64%.Third,the interlayer interference of the top seams and bottom seams can be intensified by the reservoir pressure difference and the interval distance,respectively.The proposed model has been calibrated and verified and can be directly applied to engineering,serving as a reference for reservoir combination optimization.In summary,coal seams with a permeability ratio within 10,reservoir pressure difference within 1.50 MPa,and interval distances within 50 m are recommended to coproduce together. 展开更多
关键词 Sublayer interlayer interference index Permeability ratio Reservoir pressure difference Interval distance Production contribution
下载PDF
Quantitative Characterization of Interlayer Interference in Multi-Layered Sandstone Reservoirs Offshore China
2
作者 Xinwei Jin Liuhe Yang +3 位作者 Donghao Wu Mengying Zhu Shan Gao Yong Jia 《Open Journal of Geology》 CAS 2022年第12期1093-1101,共9页
X oilfield is a typical multi-layer sandstone reservoir in offshore China. In the early stage, in order to obtain economic oil production, directional well was used to adopt a set of multi-layer combined production, w... X oilfield is a typical multi-layer sandstone reservoir in offshore China. In the early stage, in order to obtain economic oil production, directional well was used to adopt a set of multi-layer combined production, which resulted in serious interlayer interference, water injection inrush and low reserve utilization. Based on the theory of single-phase unstable seepage flow and the theory of oil-water two-phase non-piston displacement, the author innovatively established a mathematical model of interlayer dynamic interference in multilayer sandstone reservoirs, revealed the influence law of main controlling factors such as permeability, viscosity, starting pressure gradient and reservoir type on interlayer interference, and innovatively formed a quantitative characterization theory of interlayer interference in multilayer combined oil production. The technical demarcation of offshore multi-zone combined oil production reservoir system is formulated and the recombination of oil field development system is guided. 展开更多
关键词 Multi-Zone Sandstone Reservoir interlayer interference Single-Phase Unstable Seepage Two-Phase Non-Piston Displacement
下载PDF
A method for identifying coalbed methane co-production interference based on production characteristic curves: A case study of the Zhijin block, western Guizhou, China
3
作者 GUO Chen QIN Yong +4 位作者 YI Tongsheng CHEN Zhenlong YUAN Hang GAO Junzhe GOU Jiang 《Petroleum Exploration and Development》 CSCD 2022年第5期1126-1137,共12页
Efficient detection of coalbed methane(CBM) co-production interference is the key to timely adjusting the development plan and improving the co-production efficiency. Based on production data of six typical CBM co-pro... Efficient detection of coalbed methane(CBM) co-production interference is the key to timely adjusting the development plan and improving the co-production efficiency. Based on production data of six typical CBM co-production wells in the Zhijin block of western Guizhou Province, China, the production characteristic curves, including production indication curve, curve of daily water production per unit drawdown of producing fluid level with time, and curve of water production per unit differential pressure with time have been analyzed to explore the response characteristics of co-production interference on the production characteristic curves. Based on the unit water inflow data of pumping test in coal measures, the critical value of in-situ water production of the CBM wells is 2 m^(3)/(d·m). The form and the slope of the initial linear section of the production indication curves have clear responses to the interference, which can be used to discriminate internal water source from external water source based on the critical slope value of 200 m^(3)/MPa in the initial linear section of the production indication curve. The time variation curves of water production per unit differential pressure can be divided into two morphological types: up-concave curve and down-concave curve. The former is represented by producing internal water with average daily gas production greater than 800 m^(3)/d, and the latter produces external water with average daily gas production smaller than 400 m^(3)/d. The method and critical indexes for recognition of CBM co-production interference based on the production characteristic curve are constructed. A template for discriminating interference of CBM co-production was constructed combined with the gas production efficiency analysis, which can provide reference for optimizing co-production engineering design and exploring economic and efficient co-production mode. 展开更多
关键词 coalbed methane multi-seam co-production interlayer interference production indication curve external water internal water discrimination template
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部