Shuttle effect is one of the most serious disadvantages in lithium-sulfur battery which results in poor cycle performance and hinders the commercialization of Li-S battery.To reduce the dissolution of polysulfides int...Shuttle effect is one of the most serious disadvantages in lithium-sulfur battery which results in poor cycle performance and hinders the commercialization of Li-S battery.To reduce the dissolution of polysulfides into the electrolyte and prolong the cycling stability,nanoparticle-stacked metal nitride derived from layered double hydroxides(LDHs)as an interlayer was inserted between sulfur cathode and separator to confine polysulfides by physical and chemical interactions.Meanwhile,the surface of metal nitride will form an oxide passivation layer.The passivation layer possesses hydrophilic metal-O group and provides a polar surface for strong binding with polysulfide.What’s more,the nanoparticlesstacked structure could immerge and retain electrolyte well,which could enhance the ability of promoting the electron exchange rate.The sulfur electrode with nanoparticle-stacked metal nitride interlayer has an excellent cycle performance owing to the interactions between metal nitride and polysulfides.The battery delivered an initial capacity of 764.6 m Ahg^(-1) and still possesses a capacity of 477.5 mAhg^(-1) with the retention of 62.4% after 800 cycles.展开更多
基金supported by the National Natural Science Foundation of China(21701043,51402100,50702020,21573066 and 81171461)the Provincial Natural Science Foundation of Hunan(2016JJ1006,2016TP1009 and 11JJ4013)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
文摘Shuttle effect is one of the most serious disadvantages in lithium-sulfur battery which results in poor cycle performance and hinders the commercialization of Li-S battery.To reduce the dissolution of polysulfides into the electrolyte and prolong the cycling stability,nanoparticle-stacked metal nitride derived from layered double hydroxides(LDHs)as an interlayer was inserted between sulfur cathode and separator to confine polysulfides by physical and chemical interactions.Meanwhile,the surface of metal nitride will form an oxide passivation layer.The passivation layer possesses hydrophilic metal-O group and provides a polar surface for strong binding with polysulfide.What’s more,the nanoparticlesstacked structure could immerge and retain electrolyte well,which could enhance the ability of promoting the electron exchange rate.The sulfur electrode with nanoparticle-stacked metal nitride interlayer has an excellent cycle performance owing to the interactions between metal nitride and polysulfides.The battery delivered an initial capacity of 764.6 m Ahg^(-1) and still possesses a capacity of 477.5 mAhg^(-1) with the retention of 62.4% after 800 cycles.