A simple method for initializing intermediate coupled models (ICMs) using only sea surface temperature (SST) anomaly data is comprehensively tested in two sets of hindcasts with a new ICM. In the initialization sc...A simple method for initializing intermediate coupled models (ICMs) using only sea surface temperature (SST) anomaly data is comprehensively tested in two sets of hindcasts with a new ICM. In the initialization scheme, both the magnitude of the nudging parameter and the duration of the assimilation are considered, and initial conditions for both atmosphere and ocean are generated by running the coupled model with SST anomalies nudged to the observations. A comparison with the observations indicates that the scheme can generate realistic thermal fields and surface dynamic fields in the equatorial Pacific through hindcast experiments. An ideal experiment is performed to get the optimal nudging parameters which include the nudging intensity and nudging time length. Twelve-month-long hindcast experiments are performed with the model over the period 1984-2003 and the period 1997-2003. Compared with the original prediction results, the model prediction skills are significantly improved by the nudging method especially beyond a 6-month lead time during the two different periods. Potential problems and further improvements are discussed regarding the new coupled assimilation system.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (C...The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em- ployed to study the largest initial error growth in the E1 Nino predictions of an intermediate coupled model (ICM). The optimal initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of E1 Nino, the E1 Nino event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly, weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.展开更多
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for ...Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, (l'Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Vat data assimilation system implemented in the ICM are also discussed.展开更多
基金The research was supported by the Natural Science Foundation of China (Grant Nos. 60225015, 40233033, and 40221503).
文摘A simple method for initializing intermediate coupled models (ICMs) using only sea surface temperature (SST) anomaly data is comprehensively tested in two sets of hindcasts with a new ICM. In the initialization scheme, both the magnitude of the nudging parameter and the duration of the assimilation are considered, and initial conditions for both atmosphere and ocean are generated by running the coupled model with SST anomalies nudged to the observations. A comparison with the observations indicates that the scheme can generate realistic thermal fields and surface dynamic fields in the equatorial Pacific through hindcast experiments. An ideal experiment is performed to get the optimal nudging parameters which include the nudging intensity and nudging time length. Twelve-month-long hindcast experiments are performed with the model over the period 1984-2003 and the period 1997-2003. Compared with the original prediction results, the model prediction skills are significantly improved by the nudging method especially beyond a 6-month lead time during the two different periods. Potential problems and further improvements are discussed regarding the new coupled assimilation system.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
基金supported by the National Natural Science Foundation of China (NFSC Grant Nos. 41690122, 41690120, 41490644, 41490640 and 41475101)+5 种基金the Ao Shan Talents Program supported by Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASTP)a Chinese Academy of Sciences Strategic Priority Projectthe Western Pacific Ocean System (Grant Nos. XDA11010105, XDA11020306)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the National Natural Science Foundation of China Innovative Group Grant (Grant No. 41421005)the Taishan Scholarship and Qingdao Innovative Program (Grant No. 2014GJJS0101)
文摘The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em- ployed to study the largest initial error growth in the E1 Nino predictions of an intermediate coupled model (ICM). The optimal initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of E1 Nino, the E1 Nino event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly, weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41705082, 41475101, 41690122(41690120))a Chinese Academy of Sciences Strategic Priority Project-the Western Pacific Ocean System (Grant Nos. XDA11010105 and XDA11020306)+1 种基金the National Programme on Global Change and Air–Sea Interaction (Grant Nos. GASI-IPOVAI06 and GASI-IPOVAI-01-01)the China Postdoctoral Science Foundation, and a Qingdao Postdoctoral Application Research Project
文摘Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, (l'Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Vat data assimilation system implemented in the ICM are also discussed.