Objective To investigate the kinetics of quinoline biodegradation by Burkholderia pickttii, a Gram negative rod-shaped aerobe, isolated in our laboratory. Methods HPLC (Hewlett-Packard model 5050 with an UV detector) ...Objective To investigate the kinetics of quinoline biodegradation by Burkholderia pickttii, a Gram negative rod-shaped aerobe, isolated in our laboratory. Methods HPLC (Hewlett-Packard model 5050 with an UV detector) was used for the analysis of quinoline concentration. GC/MS method was used to identify the intermediate metabolites of quinoline degradation. Results The biodegradation of quinoline was inhibited by quinoline at a high concentration, and the degradation process could be described by the Haldane model. The kinetic parameters based on Haldane substrate inhibition were evaluated. The values were v = 0.44 h-1,Ks=166.7 mg/L, Ki= 650 mg/L, respectively. The quinoline concentration to avoid substrate inhibition was inferred theoretically and determined to be 329 mg/L. Conclusion The biodegradation of quinoline conforms to the Haldane inhibition model and the main intermediate metabolite of quinoline biodegradation is 2-hydroxy-quinoline.展开更多
基金The work was supported by the National Natural Science Foundation of China (Grant No. 29637010 50325824).
文摘Objective To investigate the kinetics of quinoline biodegradation by Burkholderia pickttii, a Gram negative rod-shaped aerobe, isolated in our laboratory. Methods HPLC (Hewlett-Packard model 5050 with an UV detector) was used for the analysis of quinoline concentration. GC/MS method was used to identify the intermediate metabolites of quinoline degradation. Results The biodegradation of quinoline was inhibited by quinoline at a high concentration, and the degradation process could be described by the Haldane model. The kinetic parameters based on Haldane substrate inhibition were evaluated. The values were v = 0.44 h-1,Ks=166.7 mg/L, Ki= 650 mg/L, respectively. The quinoline concentration to avoid substrate inhibition was inferred theoretically and determined to be 329 mg/L. Conclusion The biodegradation of quinoline conforms to the Haldane inhibition model and the main intermediate metabolite of quinoline biodegradation is 2-hydroxy-quinoline.