Environmental embrittlement in A3B-type intermetallics based on Ni3Al and Fe3Al has been studied in this paper. For the Ni3Al doped with 120 wt ppm B and Ni,(Al,Cr.Zr) doped with 80 wt ppm B,their elongation and ultim...Environmental embrittlement in A3B-type intermetallics based on Ni3Al and Fe3Al has been studied in this paper. For the Ni3Al doped with 120 wt ppm B and Ni,(Al,Cr.Zr) doped with 80 wt ppm B,their elongation and ultimate tensile strength decreased in the sequence:of vacuum > air >hydrogen. while for Ni,(Al,Mn) doped with 400 wt ppm B no envifonmental degradation was ob served, although a -Ni3(Al,Mn) alloy without B showed a decrease in ductility when tested in air in stead of oxygen. It is supposed that boron and hydrogen compete for the occupation of interstitial sites near grain boundaries. If boron content is sufficiently low, hydrogen embrittlement occurs ;however, if its content is sufficiently high. boron addition is capable of eliminating envjronmental ef fect in Ni3Al-based alloysi As to the micromechanism of hydrogen embrittlement in Ni3Al+B. S EM in situ observations showed that both grain boundary decohesion and a high stress concentration con tributed to hydrogen-assisted jntergranu lar cracking in this alloy. For the Fe3Al and Fe3 (Al.Cr) alloys.their mechanical properties depended strongly on grain size / grain shape and testing environment. A strain rate effect on ductiIity and fracture strength was also observed in the Fe3Al and Fe,(Al,Cr)+B aIloys. Preoxidation increased the ductility of the Fe,(Al,Cr)+B alloy. All these results can be rationalized from a hypothesis that surface reaction is the controlling process in embrittling Fe3Al-based alloys.展开更多
The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research inc...The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research include theory and material simulation, microalloying, high resolution studies of structure and composition, mechanical properties, point defects and dislocation mechanics, phase transformations, and processing. Finally, general considerations will be discussed for the future program.展开更多
Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in...Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in aeronautic and automotive engines due to its excellent mechanical properties and high strength retention at elevated temperature. The aim of this work is to present a fast and reliable methodology of inverse identification of constitutive model parameters directly from cutting experiments. FE-machining simulations implemented with a modified Johnson-Cook(TANH) constitutive model are performed to establish the robust link between observables and constitutive parameters. A series of orthogonal cutting experiments with varied cutting parameters is carried out to allow an exact comparison to the 2 D FE-simulations. A cooperative particle swarm optimization algorithm is developed and implemented into the Matlab programs to identify the enormous constitutive parameters. Results show that the simulation observables(i.e., cutting forces, chip morphologies, cutting temperature) implemented with the identified optimal material constants have high consistency with those obtained from experiments,which illustrates that the FE-machining models using the identified parameters obtained from the proposed methodology could be predicted in a close agreement to the experiments. Considering the wide range of the applied unknown parameters number, the proposed inverse methodology of identifying constitutive equations shows excellent prospect, and it can be used for other newly developed metal materials.展开更多
This paper briefiy introduces the R&D of intermetallics in China. R&D on intermetallics in a national scale in China began near ten years ago. The investigation in past years focused on the fundamental researc...This paper briefiy introduces the R&D of intermetallics in China. R&D on intermetallics in a national scale in China began near ten years ago. The investigation in past years focused on the fundamental research and materials development. A significant progress has been made. Various components that made of Ti3Al Ni3Al, TiAl and Fe3Al have been successfully manufactured Some of them have been evaluted. It is expected that some intermetallic alloys will be produced in an industrial scale in the near future.展开更多
Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys.However,the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the p...Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys.However,the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the previous molecular dynamics studies.In the present work,we show that the potential function of molecular dynamics can dramatically influence the simulation results of single crystal Ni-based superalloys.The microstructure and mechanical behavior of single crystal Ni-based superalloys under four commonly used potential functions are systematically compared.A most suitable potential function for the mechanical deformation is critically selected,and based on it,the role of strain rate on the mechanical deformation is investigated.展开更多
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two ...Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(In_(x)Ni@SiO_(2))have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In_(0.5)Ni@SiO_(2))shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.展开更多
Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materia...Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materials.In order to study the machinability of Ti2AlNb alloy,a series of turning experiments of Ti2AlNb alloy with varying cutting speed and feed rate using coated carbide tools are carried out.The results associated with cutting forces,cutting temperature and tool wear are presented and discussed.Moreover,the cutting performance of Ti2AlNb alloy is evaluated in comparison with that of most commonly used Ti6Al4 Vand Inconel 718 alloys in terms of the cutting forces and cutting temperature.The comparison results show that there is a correlation between the machinability and the mechanical properties of work material properties.Additionally,considering material removal rate and tool life,the optimized machining parameters for cutting Ti2AlNb alloys using coated carbide tools are recommended.展开更多
The microstructure and creep behavior of a DS NiAI-Fe(Nb) multiphase intermetallic alloy have been investigated. This alloyexhibits dendritic structure, in which dendritic arm is β-(Ni,Fe)(Fe,Al) phase surrounded by ...The microstructure and creep behavior of a DS NiAI-Fe(Nb) multiphase intermetallic alloy have been investigated. This alloyexhibits dendritic structure, in which dendritic arm is β-(Ni,Fe)(Fe,Al) phase surrounded by interdendritic region of γ'/γ phase.The results of the creep test indicated that all of the creep curves have similar characteristic, which is a short primary creepstage and a dominant steady state creep stage, and the creep strain ranges from 18% to 52%. The apparent stress exponentand the apparent activation energy were analyzed and discussed. The mechanism of the creep deformation was also analyzedby the observation of TEM.展开更多
The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil...The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil is comparable with the results obtained in oxygen and is in sensitive to strain rate. The fracture mode of the Fe3(Al,Cr,Zr) alloy treated at 700℃/1.5 h and tested in oil, is cleavage and with dimples in some areas.展开更多
Superplastic properties and microstructural evolution of a Ti-24Al-14Nb-3V-0.5Mo (at. pct) intermetallic alloy were studied. Optimum superplastic properties were obtained for temperatures in the interval 960℃≤5 T≤5...Superplastic properties and microstructural evolution of a Ti-24Al-14Nb-3V-0.5Mo (at. pct) intermetallic alloy were studied. Optimum superplastic properties were obtained for temperatures in the interval 960℃≤5 T≤5980℃. The apparent activation energy in the superplastic regime was determined and the deformation mechanism was also discussed. Based on the studies, a curve panel with three sheets sandwich structure was fabricated successfully. The microstructures corresponding to different strain in the part were also studied.展开更多
Various effects of laser treatments on oxide dispersion strengthened materials produced by a non-meltingroute, mechanical alloying, have been investigated. The alloys studied are a nickel- base alloyNi- 19.51%Cr- 6.0%...Various effects of laser treatments on oxide dispersion strengthened materials produced by a non-meltingroute, mechanical alloying, have been investigated. The alloys studied are a nickel- base alloyNi- 19.51%Cr- 6.0%Al- 3.41% W- 1.19%Fe- 1.02%Y_2O_3 and an iron- base alloy Fe- 20.0% Cr- 4.5%Al-0.5% Ti-0.5% Y_2O_3(wt%). Aspects examined include oxide distribution around molten zone, alloy reaction tolaser heat shock, solidification microstructures, laser simulation of zone annealing, and the response topost-heat treatment after laser melting of a local region. Optical metallography. scanning electron microscopy,hardness measurements, and thermodynamical calculation methods have been employed.展开更多
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L...By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.展开更多
Highly active and durable oxygen reduction reaction(ORR)catalysts with sufficient activity and stability of Pt are beneficial for the commercialization of proton exchange membrane fuel cells.Here we report an effectiv...Highly active and durable oxygen reduction reaction(ORR)catalysts with sufficient activity and stability of Pt are beneficial for the commercialization of proton exchange membrane fuel cells.Here we report an effective approach to prepare a composite catalyst comprising of ordered L1_(2)-Pt_(3)Fe intermetallic nanoparticles interact with single atom Fe-N_(x)-C_(y)active sites.The addition of Fe and the confinement effect of hierarchical porous structure limit the growth of intermetallic particle size(around2.5 nm).The ligand effect of the electron transfer from Fe to Pt and the synergistic interaction between L1_(2)-Pt_(3)Fe and Fe-N_(x)-C_(y)work together to reduce oxygen intermediates adsorption and improve kinetics process.Experimentally,the L1_(2)-Pt_(3)Fe/C_(Fe-N-C)catalyst shows high mass activity and specific activity at 1.010 A/mg_(Pt)and 1.166 mA/cm^(2),respectively,which are 5.8 and 5.1 times higher than those of commercial Pt/C(0.174 A/mg_(Pt)and 0.230mA/cm^(2)).Thanks to the more stable L1_(2)structure,L1_(2)-Pt_(3)Fe/C_(Fe-N-C)exhibits better durability(14mV E_(1/2)loss of L1_(2)-Pt_(3)Fe/C_(Fe-N-C)and 33 mV E_(1/2)loss of commercial Pt/C)after 30,000 cycles accelerated stress tests.The strategy to design and prepare small particle Pt-based intermetallic alloys coordinated with M-N-C active sites provides a new direction to obtain low-cost and easily prepared effective ORR catalysts.展开更多
In this paper,various core-shell structured Al—Ni@ECs composites have been prepared by a spray-drying technique.The involved ECs refer to the energetic composites(ECs)of ammonium perchlorate/nitrocellulose(AP/NC,NA)a...In this paper,various core-shell structured Al—Ni@ECs composites have been prepared by a spray-drying technique.The involved ECs refer to the energetic composites(ECs)of ammonium perchlorate/nitrocellulose(AP/NC,NA)and polyvinylidene fluoride/hexanitrohexaazaisowurtzitane(PVDF/CL-20,PC).Two Al—Ni mixtures were prepared at atomic ratios of 1:1 and 1:3 and named as Al/Ni and Al/3Ni,respectively.The thermal reactivity and combustion behaviors of Al—Ni@ECs composites have been comprehensively investigated.Results showed that the reactivity and combustion performance of Al—Ni could be enhanced by introducing both NA and PC energetic composites.Among which the Al/Ni@NA composite exhibited higher reactivity and improved combustion performance.The measured flame propagation rate(v=20.6 mm/s),average combustion wave temperature(T_(max)=1567.0°C)and maximum temperature rise rate(γ_(t)=1633.6°C/s)of Al/Ni@NA are higher than that of the Al/Ni(v=15.8 mm/s,T_(max)=858.0°C,andγ_(t)=143.5°C/s).The enhancement in combustion properties could be due to presence of the acidic gaseous products from ECs,which could etch the Al_(2)O_(3)shell on the surface of Al particles,and make the inner active Al to be easier transported,so that an intimate and faster intermetallic reaction between Al and Ni would be realized.Furthermore,the morphologies and chemical compositions of the condensed combustion products(CCPs)of Al—Ni@ECs composites were found to be different depending on the types of ECs.The compositions of CCPs are dominated with the Al—Ni intermetallics,combining with a trace amount of Al_(5)O_(6)N and Al_(2)O_(3).展开更多
The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of st...The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of strain induced a2/γinterfaces and two types of strain induced twin boundaries were identified The most,important features are high density of ledges and the existence of I/3[111] Frank partial dislocation. Mechanisms for the formation these interfaces were proposed Two types of deformation twins were observed These deformation twins always start from the ledges it seems that ledges at interfaces are important features of interfacial structure for the mechanical behavior of alloys.展开更多
Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) ...Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.展开更多
The microstructure and reerystallisation behaviour of a mechanically alloyed oxide dispersion strength-ened Ni-base superalloy MA758 (Ni30%Cr-0.3 %Al-0.5%Ti-0.6%Y_2O_3(wt%)) have been investigated by us-ing a combinat...The microstructure and reerystallisation behaviour of a mechanically alloyed oxide dispersion strength-ened Ni-base superalloy MA758 (Ni30%Cr-0.3 %Al-0.5%Ti-0.6%Y_2O_3(wt%)) have been investigated by us-ing a combination of analytical techniques including optical metallography. transmission electron microscopyand differential scanning calorimetry. It has been found that the as-extruded bar has a primary recrystallisedstructure, with a grain mean linear intercept of 0.40 μm. Reerystaliisation into a coarse, columnar grain struc-ture takes place at temperature well over 1200℃ . very close to the melting start point of the alloy. The storedenergy responsible for recrystallisation is 0.31 J /g The room temperature Vickers hardness of the alloy dropsfrom 405 for the as-extruded structure to 215 after reerystallisation.展开更多
The microstructure of Ti-24Al-14NB-3V intermetallic alloy with solution treated was investigated by trans mission electron microscopy (TEM) and selected area electron diffraction (SAD) in conjunction with X-ray energy...The microstructure of Ti-24Al-14NB-3V intermetallic alloy with solution treated was investigated by trans mission electron microscopy (TEM) and selected area electron diffraction (SAD) in conjunction with X-ray energydispersive spectroscopy (EDS) techniques. It shown that =50% ductile βo-phase and small amount of O phase,and α2 with the number of dislocations having c-component resulted in increasing slip system of the material, havecontributed to a good combination of strength and ductility at room temperature. Owing to some reciprocal planes ofsimilarity between α2 and O Phases, to distinguish both of two phases, a series of diffraction patterns obtained bytilting around one reciprocal direction of the phase are needed based on the systematic extinction and reciprocalplanes sequences occurred in the diffraction patterns, if those patterns are not containing one of three reciprocal unitvectors, a*, b*, c* in terms of the crystal unit cell, a, b, c.展开更多
A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the inte...A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the interfacial microstructure and shear strength of joints was examined. And the relationship between the interfacial lattice structure and the fracture behavior of the joint was investigated. The findings reveal a sectionalized characteristic with three reaction zones (Zone I, Zone II and Zone III) in the microstructure of the TiAl intermetallic to K4169 alloy joint. As the Zr content in filler metals increased, the diffusion of Ti transitioned from long-distance to short-distance in Zone I, changing the initial composition from TiNi_(3) /TiNi/NiNb/(Cr, Fe, Ni)SS to NiCrFe/(Cr, Fe, Ni)SS /TiNi. In Zone II, the initial composition altered from TiNi_(3) /TiNi to TiNi/Ti_(2) Ni/TiNi_(3) /TiCu/TiNi. The interface between Zones II and III altered from a non-coherent and semi-coherent interface of TiNi/TiAl/Ti_(3) Al with significant residual stress to a semi-coherent interface of TiNi/TiNi_(3) /TiAl_(2) /Ti_(3) Al with a gradient distribution. The shear strength of the joint initially decreased and then increased. When the Zr content of filler metal was 25 at.%, the shear strength of the joint reached 288 MPa. The crack initiation position changed from non-coherent TiNi/TiAl interface with high angle grain boundaries (HAGBs) and lattice mismatch of 65.86 at.% to a semi-coherent Ti3 Al/TiAl2 interface with a lattice mismatch of 20.07 at.% when the Zr content increased. The brittle fracture was present on the fracture surfaces of all brazed joints.展开更多
文摘Environmental embrittlement in A3B-type intermetallics based on Ni3Al and Fe3Al has been studied in this paper. For the Ni3Al doped with 120 wt ppm B and Ni,(Al,Cr.Zr) doped with 80 wt ppm B,their elongation and ultimate tensile strength decreased in the sequence:of vacuum > air >hydrogen. while for Ni,(Al,Mn) doped with 400 wt ppm B no envifonmental degradation was ob served, although a -Ni3(Al,Mn) alloy without B showed a decrease in ductility when tested in air in stead of oxygen. It is supposed that boron and hydrogen compete for the occupation of interstitial sites near grain boundaries. If boron content is sufficiently low, hydrogen embrittlement occurs ;however, if its content is sufficiently high. boron addition is capable of eliminating envjronmental ef fect in Ni3Al-based alloysi As to the micromechanism of hydrogen embrittlement in Ni3Al+B. S EM in situ observations showed that both grain boundary decohesion and a high stress concentration con tributed to hydrogen-assisted jntergranu lar cracking in this alloy. For the Fe3Al and Fe3 (Al.Cr) alloys.their mechanical properties depended strongly on grain size / grain shape and testing environment. A strain rate effect on ductiIity and fracture strength was also observed in the Fe3Al and Fe,(Al,Cr)+B aIloys. Preoxidation increased the ductility of the Fe,(Al,Cr)+B alloy. All these results can be rationalized from a hypothesis that surface reaction is the controlling process in embrittling Fe3Al-based alloys.
文摘The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research include theory and material simulation, microalloying, high resolution studies of structure and composition, mechanical properties, point defects and dislocation mechanics, phase transformations, and processing. Finally, general considerations will be discussed for the future program.
基金financial support of the National Natural Science Foundation of China (No. 51475233)
文摘Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in aeronautic and automotive engines due to its excellent mechanical properties and high strength retention at elevated temperature. The aim of this work is to present a fast and reliable methodology of inverse identification of constitutive model parameters directly from cutting experiments. FE-machining simulations implemented with a modified Johnson-Cook(TANH) constitutive model are performed to establish the robust link between observables and constitutive parameters. A series of orthogonal cutting experiments with varied cutting parameters is carried out to allow an exact comparison to the 2 D FE-simulations. A cooperative particle swarm optimization algorithm is developed and implemented into the Matlab programs to identify the enormous constitutive parameters. Results show that the simulation observables(i.e., cutting forces, chip morphologies, cutting temperature) implemented with the identified optimal material constants have high consistency with those obtained from experiments,which illustrates that the FE-machining models using the identified parameters obtained from the proposed methodology could be predicted in a close agreement to the experiments. Considering the wide range of the applied unknown parameters number, the proposed inverse methodology of identifying constitutive equations shows excellent prospect, and it can be used for other newly developed metal materials.
文摘This paper briefiy introduces the R&D of intermetallics in China. R&D on intermetallics in a national scale in China began near ten years ago. The investigation in past years focused on the fundamental research and materials development. A significant progress has been made. Various components that made of Ti3Al Ni3Al, TiAl and Fe3Al have been successfully manufactured Some of them have been evaluted. It is expected that some intermetallic alloys will be produced in an industrial scale in the near future.
基金Project supported by National Science and Technology Major Project of China(Grant No.2017-IV-0003-0040)Fundamental Research Funds for the Central Universities in NWPU,China(Grant No.31020180QD088)+2 种基金the National Natural Science Foundation of China(Grant Nos.12002275 and 51904015)the Natural Science Foundation of Shaanxi Province,China(Grant No.2020JQ-125)General Program of Science and Technology Development Project of Beijing Municipal Education Commission,China(Grant No.KM202010005008).
文摘Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys.However,the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the previous molecular dynamics studies.In the present work,we show that the potential function of molecular dynamics can dramatically influence the simulation results of single crystal Ni-based superalloys.The microstructure and mechanical behavior of single crystal Ni-based superalloys under four commonly used potential functions are systematically compared.A most suitable potential function for the mechanical deformation is critically selected,and based on it,the role of strain rate on the mechanical deformation is investigated.
基金supported by the National Natural Science Foundation of China(21976078 and 21773106)the National Key R&D Program of China(2016YFC0205900)+1 种基金the Natural Science Foundation of Jiangxi Province(20202ACB213001)National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2019A12)。
文摘Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(In_(x)Ni@SiO_(2))have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In_(0.5)Ni@SiO_(2))shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.
基金supported by the National Natural Science Foundation of China(No.51475233)
文摘Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materials.In order to study the machinability of Ti2AlNb alloy,a series of turning experiments of Ti2AlNb alloy with varying cutting speed and feed rate using coated carbide tools are carried out.The results associated with cutting forces,cutting temperature and tool wear are presented and discussed.Moreover,the cutting performance of Ti2AlNb alloy is evaluated in comparison with that of most commonly used Ti6Al4 Vand Inconel 718 alloys in terms of the cutting forces and cutting temperature.The comparison results show that there is a correlation between the machinability and the mechanical properties of work material properties.Additionally,considering material removal rate and tool life,the optimized machining parameters for cutting Ti2AlNb alloys using coated carbide tools are recommended.
基金This work was supported by the National Natural Science Foundation of China (No.59895152) National Advanced Materials Committee of China (No.863-715-005-0030), to whom we are very grateful.
文摘The microstructure and creep behavior of a DS NiAI-Fe(Nb) multiphase intermetallic alloy have been investigated. This alloyexhibits dendritic structure, in which dendritic arm is β-(Ni,Fe)(Fe,Al) phase surrounded by interdendritic region of γ'/γ phase.The results of the creep test indicated that all of the creep curves have similar characteristic, which is a short primary creepstage and a dominant steady state creep stage, and the creep strain ranges from 18% to 52%. The apparent stress exponentand the apparent activation energy were analyzed and discussed. The mechanism of the creep deformation was also analyzedby the observation of TEM.
文摘The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil is comparable with the results obtained in oxygen and is in sensitive to strain rate. The fracture mode of the Fe3(Al,Cr,Zr) alloy treated at 700℃/1.5 h and tested in oil, is cleavage and with dimples in some areas.
文摘Superplastic properties and microstructural evolution of a Ti-24Al-14Nb-3V-0.5Mo (at. pct) intermetallic alloy were studied. Optimum superplastic properties were obtained for temperatures in the interval 960℃≤5 T≤5980℃. The apparent activation energy in the superplastic regime was determined and the deformation mechanism was also discussed. Based on the studies, a curve panel with three sheets sandwich structure was fabricated successfully. The microstructures corresponding to different strain in the part were also studied.
文摘Various effects of laser treatments on oxide dispersion strengthened materials produced by a non-meltingroute, mechanical alloying, have been investigated. The alloys studied are a nickel- base alloyNi- 19.51%Cr- 6.0%Al- 3.41% W- 1.19%Fe- 1.02%Y_2O_3 and an iron- base alloy Fe- 20.0% Cr- 4.5%Al-0.5% Ti-0.5% Y_2O_3(wt%). Aspects examined include oxide distribution around molten zone, alloy reaction tolaser heat shock, solidification microstructures, laser simulation of zone annealing, and the response topost-heat treatment after laser melting of a local region. Optical metallography. scanning electron microscopy,hardness measurements, and thermodynamical calculation methods have been employed.
文摘By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.
基金supported by the National Science and Technology Major Project(No.2017YFB0102900)National Natural Science Foundation of China(Nos.21633008,21673221 and U1601211)Jilin Province Science and Technology Development Program(Nos.20200201001JC,20190201270JC and 20180101030JC)。
文摘Highly active and durable oxygen reduction reaction(ORR)catalysts with sufficient activity and stability of Pt are beneficial for the commercialization of proton exchange membrane fuel cells.Here we report an effective approach to prepare a composite catalyst comprising of ordered L1_(2)-Pt_(3)Fe intermetallic nanoparticles interact with single atom Fe-N_(x)-C_(y)active sites.The addition of Fe and the confinement effect of hierarchical porous structure limit the growth of intermetallic particle size(around2.5 nm).The ligand effect of the electron transfer from Fe to Pt and the synergistic interaction between L1_(2)-Pt_(3)Fe and Fe-N_(x)-C_(y)work together to reduce oxygen intermediates adsorption and improve kinetics process.Experimentally,the L1_(2)-Pt_(3)Fe/C_(Fe-N-C)catalyst shows high mass activity and specific activity at 1.010 A/mg_(Pt)and 1.166 mA/cm^(2),respectively,which are 5.8 and 5.1 times higher than those of commercial Pt/C(0.174 A/mg_(Pt)and 0.230mA/cm^(2)).Thanks to the more stable L1_(2)structure,L1_(2)-Pt_(3)Fe/C_(Fe-N-C)exhibits better durability(14mV E_(1/2)loss of L1_(2)-Pt_(3)Fe/C_(Fe-N-C)and 33 mV E_(1/2)loss of commercial Pt/C)after 30,000 cycles accelerated stress tests.The strategy to design and prepare small particle Pt-based intermetallic alloys coordinated with M-N-C active sites provides a new direction to obtain low-cost and easily prepared effective ORR catalysts.
基金supported by the Nation Natural Science Foundation of China(Grant No.51776176)the Fundamental Research Funds for the Central Universities,China(Grant No.G2017KY0301)+1 种基金partially funded by NSAF project(Grant No.2030202)sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant No.CX2021048)。
文摘In this paper,various core-shell structured Al—Ni@ECs composites have been prepared by a spray-drying technique.The involved ECs refer to the energetic composites(ECs)of ammonium perchlorate/nitrocellulose(AP/NC,NA)and polyvinylidene fluoride/hexanitrohexaazaisowurtzitane(PVDF/CL-20,PC).Two Al—Ni mixtures were prepared at atomic ratios of 1:1 and 1:3 and named as Al/Ni and Al/3Ni,respectively.The thermal reactivity and combustion behaviors of Al—Ni@ECs composites have been comprehensively investigated.Results showed that the reactivity and combustion performance of Al—Ni could be enhanced by introducing both NA and PC energetic composites.Among which the Al/Ni@NA composite exhibited higher reactivity and improved combustion performance.The measured flame propagation rate(v=20.6 mm/s),average combustion wave temperature(T_(max)=1567.0°C)and maximum temperature rise rate(γ_(t)=1633.6°C/s)of Al/Ni@NA are higher than that of the Al/Ni(v=15.8 mm/s,T_(max)=858.0°C,andγ_(t)=143.5°C/s).The enhancement in combustion properties could be due to presence of the acidic gaseous products from ECs,which could etch the Al_(2)O_(3)shell on the surface of Al particles,and make the inner active Al to be easier transported,so that an intimate and faster intermetallic reaction between Al and Ni would be realized.Furthermore,the morphologies and chemical compositions of the condensed combustion products(CCPs)of Al—Ni@ECs composites were found to be different depending on the types of ECs.The compositions of CCPs are dominated with the Al—Ni intermetallics,combining with a trace amount of Al_(5)O_(6)N and Al_(2)O_(3).
文摘The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of strain induced a2/γinterfaces and two types of strain induced twin boundaries were identified The most,important features are high density of ledges and the existence of I/3[111] Frank partial dislocation. Mechanisms for the formation these interfaces were proposed Two types of deformation twins were observed These deformation twins always start from the ledges it seems that ledges at interfaces are important features of interfacial structure for the mechanical behavior of alloys.
基金financially supported by the International Cooperation Project Foundation in Science and Technology of China(No.2008DFR50070)
文摘Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.
文摘The microstructure and reerystallisation behaviour of a mechanically alloyed oxide dispersion strength-ened Ni-base superalloy MA758 (Ni30%Cr-0.3 %Al-0.5%Ti-0.6%Y_2O_3(wt%)) have been investigated by us-ing a combination of analytical techniques including optical metallography. transmission electron microscopyand differential scanning calorimetry. It has been found that the as-extruded bar has a primary recrystallisedstructure, with a grain mean linear intercept of 0.40 μm. Reerystaliisation into a coarse, columnar grain struc-ture takes place at temperature well over 1200℃ . very close to the melting start point of the alloy. The storedenergy responsible for recrystallisation is 0.31 J /g The room temperature Vickers hardness of the alloy dropsfrom 405 for the as-extruded structure to 215 after reerystallisation.
文摘The microstructure of Ti-24Al-14NB-3V intermetallic alloy with solution treated was investigated by trans mission electron microscopy (TEM) and selected area electron diffraction (SAD) in conjunction with X-ray energydispersive spectroscopy (EDS) techniques. It shown that =50% ductile βo-phase and small amount of O phase,and α2 with the number of dislocations having c-component resulted in increasing slip system of the material, havecontributed to a good combination of strength and ductility at room temperature. Owing to some reciprocal planes ofsimilarity between α2 and O Phases, to distinguish both of two phases, a series of diffraction patterns obtained bytilting around one reciprocal direction of the phase are needed based on the systematic extinction and reciprocalplanes sequences occurred in the diffraction patterns, if those patterns are not containing one of three reciprocal unitvectors, a*, b*, c* in terms of the crystal unit cell, a, b, c.
基金supported by the National Natural Science Foun-dation of China(Nos.52275314 and 52075074)the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning.
文摘A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the interfacial microstructure and shear strength of joints was examined. And the relationship between the interfacial lattice structure and the fracture behavior of the joint was investigated. The findings reveal a sectionalized characteristic with three reaction zones (Zone I, Zone II and Zone III) in the microstructure of the TiAl intermetallic to K4169 alloy joint. As the Zr content in filler metals increased, the diffusion of Ti transitioned from long-distance to short-distance in Zone I, changing the initial composition from TiNi_(3) /TiNi/NiNb/(Cr, Fe, Ni)SS to NiCrFe/(Cr, Fe, Ni)SS /TiNi. In Zone II, the initial composition altered from TiNi_(3) /TiNi to TiNi/Ti_(2) Ni/TiNi_(3) /TiCu/TiNi. The interface between Zones II and III altered from a non-coherent and semi-coherent interface of TiNi/TiAl/Ti_(3) Al with significant residual stress to a semi-coherent interface of TiNi/TiNi_(3) /TiAl_(2) /Ti_(3) Al with a gradient distribution. The shear strength of the joint initially decreased and then increased. When the Zr content of filler metal was 25 at.%, the shear strength of the joint reached 288 MPa. The crack initiation position changed from non-coherent TiNi/TiAl interface with high angle grain boundaries (HAGBs) and lattice mismatch of 65.86 at.% to a semi-coherent Ti3 Al/TiAl2 interface with a lattice mismatch of 20.07 at.% when the Zr content increased. The brittle fracture was present on the fracture surfaces of all brazed joints.