In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and micro...In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.展开更多
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi...This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.展开更多
In this study,the characterization and modification of waste magnesium chips(WMCs),which were produced by plastic molding in a gold manufacturing factory and are used as Mg-rich intermetallic composites in storing h...In this study,the characterization and modification of waste magnesium chips(WMCs),which were produced by plastic molding in a gold manufacturing factory and are used as Mg-rich intermetallic composites in storing hydrogen,were discussed in detail.WMCs were analyzed using X-ray diffraction(XRD),X-ray fluorescence(XRF) spectroscopy,differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and Brunauer-Emmett-Teller(BET) analysis to characterize the materials’ structural properties.Mechanical milling,organic treatment,and inorganic salt addition were carried out to modify the WMCs’ surface to prepare Mg-rich intermetallic composites for storing hydrogen.The modified samples were analyzed using high-pressure volumetric analyses to calculate their hydrogen storage capacity.The authors conclude that modified WMC was promising as an Mg-rich intermetallic composite that was suitable for use in hydrogen storage with a 4.59 wt%capacity at 320 C under a hydrogen pressure of 60 bar.展开更多
A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),...A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrum (EDS) analysis,microhardness test,and ball-on-disc wear experiment.XRD results indicate that some new phases FeAl,Fe0.23Ni0.77Al,and Ni3Al exit in the composite coating with the Al2O3 addition.SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures.The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating.The formation mechanism of the intermetallic compounds was also investigated.展开更多
The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research inc...The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research include theory and material simulation, microalloying, high resolution studies of structure and composition, mechanical properties, point defects and dislocation mechanics, phase transformations, and processing. Finally, general considerations will be discussed for the future program.展开更多
Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon...Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.展开更多
In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900℃ in static air was investigated. The results indicate t...In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900℃ in static air was investigated. The results indicate that the composite samples present a much lower oxidation mass gain. Under long-time intensive oxidation exposure, the formed oxide scale is multi-layer. The formation of the outer TiO2 layer is fine and dense, the internal Al2O3 scale has good adhesiveness with the outer TiO2 scale, and the TiO2+Al2O3 mixed layer forming the protective oxide scale is favorable for the improvement of oxidation resistance. It is believed that the incorporation of Al2O3 particulates into the metal matrix decreases the coefficient of thermal expansion of the substrate, and forms a local three-dimensional network structure that can hold the oxide scale. The formation of the oxide scale with finer particle size, stronger adherence, less micro-defects and slower growth rate can contribute to the improvement of oxidation resistance. Nb element plays an important role in reducing the internal oxidation action of the materials, restraining the growth of TiO2 crystals and promoting the stable formation of the Al2O3-riched layer, which is beneficial to improve the oxidation properties.展开更多
Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) ...Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.展开更多
Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength...Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength from room temperature to 1000℃ of the composites increase with increasing volume fraction of the strengthening phase. Especially, the yield strength of NiAl-20TiB2 was approximately twice as high as that of unreinforced NiAl. The ductility of the composites at room temperature is also superior to the monolithic NiAl.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 50432010, 50372037).
文摘In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.
基金supported by the National Research Council of Science & Technology (NST) grant by the Korea Government (MSIT) (grant no.CRC23011-000)by the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT,and Future Planning (MSIP,South Korea) (grant no.NRF-2021R1C1C1007645)。
文摘This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.
基金the Turkish State Planning Organization(Project No.98-DPT-07-01-02)for its financial support
文摘In this study,the characterization and modification of waste magnesium chips(WMCs),which were produced by plastic molding in a gold manufacturing factory and are used as Mg-rich intermetallic composites in storing hydrogen,were discussed in detail.WMCs were analyzed using X-ray diffraction(XRD),X-ray fluorescence(XRF) spectroscopy,differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and Brunauer-Emmett-Teller(BET) analysis to characterize the materials’ structural properties.Mechanical milling,organic treatment,and inorganic salt addition were carried out to modify the WMCs’ surface to prepare Mg-rich intermetallic composites for storing hydrogen.The modified samples were analyzed using high-pressure volumetric analyses to calculate their hydrogen storage capacity.The authors conclude that modified WMC was promising as an Mg-rich intermetallic composite that was suitable for use in hydrogen storage with a 4.59 wt%capacity at 320 C under a hydrogen pressure of 60 bar.
文摘A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrum (EDS) analysis,microhardness test,and ball-on-disc wear experiment.XRD results indicate that some new phases FeAl,Fe0.23Ni0.77Al,and Ni3Al exit in the composite coating with the Al2O3 addition.SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures.The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating.The formation mechanism of the intermetallic compounds was also investigated.
文摘The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research include theory and material simulation, microalloying, high resolution studies of structure and composition, mechanical properties, point defects and dislocation mechanics, phase transformations, and processing. Finally, general considerations will be discussed for the future program.
基金the Natural Science Fundation of Guangxi Province(No.0575104)the Guangxi Education Department Key Fund(No.2003-22)+1 种基金the Guangxi Fund of New Century Qualified Scholars(No.2002210)the National Science Foundation(No.50672016)
文摘Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.
基金supported by the Special Program of the Education Bureau of Shaanxi Province of China (No.08JK240)the Breeding Program for Provincial Level Key Research Base of Shaanxi University of Technology (No.SLGJD0806)
文摘In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900℃ in static air was investigated. The results indicate that the composite samples present a much lower oxidation mass gain. Under long-time intensive oxidation exposure, the formed oxide scale is multi-layer. The formation of the outer TiO2 layer is fine and dense, the internal Al2O3 scale has good adhesiveness with the outer TiO2 scale, and the TiO2+Al2O3 mixed layer forming the protective oxide scale is favorable for the improvement of oxidation resistance. It is believed that the incorporation of Al2O3 particulates into the metal matrix decreases the coefficient of thermal expansion of the substrate, and forms a local three-dimensional network structure that can hold the oxide scale. The formation of the oxide scale with finer particle size, stronger adherence, less micro-defects and slower growth rate can contribute to the improvement of oxidation resistance. Nb element plays an important role in reducing the internal oxidation action of the materials, restraining the growth of TiO2 crystals and promoting the stable formation of the Al2O3-riched layer, which is beneficial to improve the oxidation properties.
基金financially supported by the International Cooperation Project Foundation in Science and Technology of China(No.2008DFR50070)
文摘Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.
文摘Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength from room temperature to 1000℃ of the composites increase with increasing volume fraction of the strengthening phase. Especially, the yield strength of NiAl-20TiB2 was approximately twice as high as that of unreinforced NiAl. The ductility of the composites at room temperature is also superior to the monolithic NiAl.