An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog...An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.展开更多
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to t...Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field.展开更多
Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed ...Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.展开更多
Activation and reconstruction of the spinal cord circuitry is important for improving motor function following spinal cord injury.We conducted a case series study to investigate motor function improvement in 14 patien...Activation and reconstruction of the spinal cord circuitry is important for improving motor function following spinal cord injury.We conducted a case series study to investigate motor function improvement in 14 patients with chronic spinal cord injury treated with 4 weeks of unilateral(right only)cortical intermittent theta burst stimulation combined with bilateral magnetic stimulation of L3-L4 nerve roots,five times a week.Bilateral resting motor evoked potential amplitude was increased,central motor conduction time on the side receiving cortical stimulation was significantly decreased,and lower extremity motor score,Berg balance score,spinal cord independence measure-III score,and 10 m-walking speed were all increased after treatment.Right resting motor evoked potential amplitude was positively correlated with lower extremity motor score after 4 weeks of treatment.These findings suggest that cortical intermittent theta burst stimulation combined with precise root stimulation can improve nerve conduction of the corticospinal tract and lower limb motor function recovery in patients with chronic spinal cord injury.展开更多
Intermittent theta burst stimulation(iTBS),a time-saving and cost-effective repetitive transcranial magnetic stimulation regime,has been shown to improve cognition in patients with Alzheimer’s disease(AD).However,the...Intermittent theta burst stimulation(iTBS),a time-saving and cost-effective repetitive transcranial magnetic stimulation regime,has been shown to improve cognition in patients with Alzheimer’s disease(AD).However,the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown.Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation.Here,we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1(ISCA1,an essential regulatory factor for mitochondrial respiration)in the brain of APP/PS1 mice.In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function,which is required for ISCA1.Moreover,iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice.The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD.We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.展开更多
目的:探索间歇性θ短阵脉冲刺激(iTBS)对脑卒中后中重度运动功能障碍患者的即刻影响机制。方法:于2020年8月—2021年3月在复旦大学附属华山医院康复医学科门诊或病房招募脑卒中患者10例,随机分为iTBS组和安慰刺激组,i TBS组接受单次患...目的:探索间歇性θ短阵脉冲刺激(iTBS)对脑卒中后中重度运动功能障碍患者的即刻影响机制。方法:于2020年8月—2021年3月在复旦大学附属华山医院康复医学科门诊或病房招募脑卒中患者10例,随机分为iTBS组和安慰刺激组,i TBS组接受单次患侧初级运动皮层区(primary motor cortex,M1)的iTBS干预,安慰刺激组接受单次患侧M1的安慰刺激干预。干预前后对所有患者进行神经电生理评估和近红外脑功能检测。结果:与安慰刺激组相比,i TBS刺激组干预后功能连接强度在患侧M1区-健侧初级躯体感觉皮层区(primary somatosensory cortex,S1)和患侧M1区-健侧辅助运动皮层区(pre-motor and supplementary motor cortex,SMA)较干预前显著性升高(P<0.05)。然而,双侧M1区的MEP波幅并未发生显著性变化(P>0.05)。结论:针对脑卒中后中重度运动功能障碍患者,单次iTBS刺激可引起大脑发生即刻的神经可塑性改变,但未能引起大脑结构或功能的显著性变化。展开更多
基金supported by a grant from Ministry of Science,Technological Development and Innovation,Serbia,No.451-03-68/2022-14/200178(to NN)University of Defence,No.MFVMA/02/22-24(to MN)。
文摘An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.
基金the scope of the CICS-UBI projects UIDP/Multi/00709/2019,UIDB/Multi/00709/2019,UIDP/00709/2020,UIDB/00709/2020,financed by national funds through the Portuguese Foundation for Science and Technology/MCTESby funds to the PPBI-Portuguese Platform of Bio Imaging through the Project POCI-01-0145-FEDER-022122(to GB,MVP,NP)supported by a grant from the Portuguese Foundation for Science and Technology/MCTES(2021.07854.BD)(to IS)。
文摘Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field.
基金supported by the Postdoctoral Research Funds of Hebei Medical University(30705010016-3759)Natural Science Foundation of China(32272328)+4 种基金Natural Science Foundation of Hebei Province(B2022321001)National Key Research Project of Hebei Province(20375502D)Postdoctoral Research Project of Hebei Province(B2022003031)Science and Technology Research Program of Hebei Provincial Colleges(QN2023229)Hebei Provincial Key Laboratory of Nutrition and Health(2023YDYY-KF05)。
文摘Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.
基金supported by National Key R&D Program of China,No.2020YFC2004202the National Natural Science Foundation of China,Nos.81974358 and 81772453(all to DSX).
文摘Activation and reconstruction of the spinal cord circuitry is important for improving motor function following spinal cord injury.We conducted a case series study to investigate motor function improvement in 14 patients with chronic spinal cord injury treated with 4 weeks of unilateral(right only)cortical intermittent theta burst stimulation combined with bilateral magnetic stimulation of L3-L4 nerve roots,five times a week.Bilateral resting motor evoked potential amplitude was increased,central motor conduction time on the side receiving cortical stimulation was significantly decreased,and lower extremity motor score,Berg balance score,spinal cord independence measure-III score,and 10 m-walking speed were all increased after treatment.Right resting motor evoked potential amplitude was positively correlated with lower extremity motor score after 4 weeks of treatment.These findings suggest that cortical intermittent theta burst stimulation combined with precise root stimulation can improve nerve conduction of the corticospinal tract and lower limb motor function recovery in patients with chronic spinal cord injury.
基金supported by the National Natural Science Foundation of China(81901142)funds for key support objects of Third Military Medical University.
文摘Intermittent theta burst stimulation(iTBS),a time-saving and cost-effective repetitive transcranial magnetic stimulation regime,has been shown to improve cognition in patients with Alzheimer’s disease(AD).However,the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown.Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation.Here,we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1(ISCA1,an essential regulatory factor for mitochondrial respiration)in the brain of APP/PS1 mice.In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function,which is required for ISCA1.Moreover,iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice.The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD.We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.
文摘目的:探索间歇性θ短阵脉冲刺激(iTBS)对脑卒中后中重度运动功能障碍患者的即刻影响机制。方法:于2020年8月—2021年3月在复旦大学附属华山医院康复医学科门诊或病房招募脑卒中患者10例,随机分为iTBS组和安慰刺激组,i TBS组接受单次患侧初级运动皮层区(primary motor cortex,M1)的iTBS干预,安慰刺激组接受单次患侧M1的安慰刺激干预。干预前后对所有患者进行神经电生理评估和近红外脑功能检测。结果:与安慰刺激组相比,i TBS刺激组干预后功能连接强度在患侧M1区-健侧初级躯体感觉皮层区(primary somatosensory cortex,S1)和患侧M1区-健侧辅助运动皮层区(pre-motor and supplementary motor cortex,SMA)较干预前显著性升高(P<0.05)。然而,双侧M1区的MEP波幅并未发生显著性变化(P>0.05)。结论:针对脑卒中后中重度运动功能障碍患者,单次iTBS刺激可引起大脑发生即刻的神经可塑性改变,但未能引起大脑结构或功能的显著性变化。