A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the form...The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.展开更多
In order to reduce high calibration pressure in hydroforming of components with too small radii, a method wasproposed to manufacture automotive hollow components with rectangular shape by relatively lower pressure. Th...In order to reduce high calibration pressure in hydroforming of components with too small radii, a method wasproposed to manufacture automotive hollow components with rectangular shape by relatively lower pressure. Theprocess is simulated and analyzed. It is thought that the friction force between the die surface and tube is a mainreason that high pressure is needed to form small radii. Using the method proposed in this paper, a petal-like sectionshape is first preformed so that the central zones of the four sides of the preform section do not contact with the diesides, thus the tube metal is easy to flow into the transition radii area in calibration stage. Moreover, a positive forcealong the sides is produced by the internal pressure, which is beneficial to overcome the friction force and push thematerial into the radii. Therefore, the pressure for forming the transition radii is greatly reduced and the componentswith small radii can be formed with relatively lower pressure. For the experimental case conducted in this paper, theforming pressure is reduced by about 28.6% than the estimated forming pressure.展开更多
The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distri...The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.展开更多
An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasiz...An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasized with fixed total axial feeding length.The loading paths were analyzed together with the corresponding diagram of stress and strain.Two kinds of bursting phenomenon occurred in the experiment.Sound part can be formed whether there are wrinkles or not.It is indicated by the experiment results that the loading path has great effect on the distribution of material during axial feeding.The thickness distribution is more even for the part formed with wrinkles than that without wrinkles.展开更多
The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its ap...The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its application as the structural materials due to the positive mixing enthalpy of the two elements. Since high pressure is in favor of the formation of the glass, the effect of pressure on the structural and dynamical heterogeneity of phase-separated CusoAgso liquid is inves- tigated by molecular dynamics simulation in the pressure range of 0-16 GPa. The results clearly show that the pressure promotes the formation of metallic glass by increasing the number of fivefold symmetry cluster W and dynamical relaxation time; meanwhile, the liquid-liquid phase separation is also enhanced, and the homogenous atom pAlrs show stronger interaction than heterogeneous atom pAlrs with increasing pressure. The dynamical heterogeneity is related to the formation of fivefold symmetry clusters. The lower growing rate of W at higher pressure with decreasing temperature corresponds to the slow increase in dynamical heterogeneity. The pressured glass with miscibility gap may act as a candidate glass with improved plastic formation ability. The results explore the structural and dynamical heterogeneity of phase-separated liquid at atomic level.展开更多
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
基金Project(51305386)supported by the National Natural Science Foundation of ChinaProject(E2013203093)supported by the Natural Science Foundation of Hebei Province,China
文摘The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.
文摘In order to reduce high calibration pressure in hydroforming of components with too small radii, a method wasproposed to manufacture automotive hollow components with rectangular shape by relatively lower pressure. Theprocess is simulated and analyzed. It is thought that the friction force between the die surface and tube is a mainreason that high pressure is needed to form small radii. Using the method proposed in this paper, a petal-like sectionshape is first preformed so that the central zones of the four sides of the preform section do not contact with the diesides, thus the tube metal is easy to flow into the transition radii area in calibration stage. Moreover, a positive forcealong the sides is produced by the internal pressure, which is beneficial to overcome the friction force and push thematerial into the radii. Therefore, the pressure for forming the transition radii is greatly reduced and the componentswith small radii can be formed with relatively lower pressure. For the experimental case conducted in this paper, theforming pressure is reduced by about 28.6% than the estimated forming pressure.
基金Funded by the National Natural Science Foundation of China(50525516)
文摘The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.
基金This work is financially supported by the National Natural Science Fund for Distinguished Young Scholars ( No 50525516)the Specialized Research Fund for the Doctoral Program of Higher Edu-cation (No 20050213041)
文摘An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasized with fixed total axial feeding length.The loading paths were analyzed together with the corresponding diagram of stress and strain.Two kinds of bursting phenomenon occurred in the experiment.Sound part can be formed whether there are wrinkles or not.It is indicated by the experiment results that the loading path has great effect on the distribution of material during axial feeding.The thickness distribution is more even for the part formed with wrinkles than that without wrinkles.
基金Financial support from the National Natural Science Foundation of China (Nos. 51371108, 51501104 and 51501103) and the Natural Science Foundation of Shandong Province (No. ZR2014EMM011) is gratefully acknowledged. A major part of the present computation was carried out using the HPC Cluster Supercomputer center at Shandong University (Weihai).
文摘The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its application as the structural materials due to the positive mixing enthalpy of the two elements. Since high pressure is in favor of the formation of the glass, the effect of pressure on the structural and dynamical heterogeneity of phase-separated CusoAgso liquid is inves- tigated by molecular dynamics simulation in the pressure range of 0-16 GPa. The results clearly show that the pressure promotes the formation of metallic glass by increasing the number of fivefold symmetry cluster W and dynamical relaxation time; meanwhile, the liquid-liquid phase separation is also enhanced, and the homogenous atom pAlrs show stronger interaction than heterogeneous atom pAlrs with increasing pressure. The dynamical heterogeneity is related to the formation of fivefold symmetry clusters. The lower growing rate of W at higher pressure with decreasing temperature corresponds to the slow increase in dynamical heterogeneity. The pressured glass with miscibility gap may act as a candidate glass with improved plastic formation ability. The results explore the structural and dynamical heterogeneity of phase-separated liquid at atomic level.