A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the form...The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.展开更多
Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian dis...Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian distribution, is proposed in this paper. It can appropriately capture the skin effect as well as the temperature effect of mixed CNT bundles. The results of the closed-form expression and the numerical calculation are compared with various mean diameters, standard deviations, and temperatures. It is shown that the proposed model has very high accuracy in the whole frequency range considered, with maximum errors of 1% and 2.3% for the resistance and the internal inductance, respectively. Moreover, by using the proposed model, the high-frequency electrical characteristics of mixed CNT bundles are deeply analyzed to provide helpful design guidelines for their application in future high-performance three-dimensional integrated circuits.展开更多
In order to reduce high calibration pressure in hydroforming of components with too small radii, a method wasproposed to manufacture automotive hollow components with rectangular shape by relatively lower pressure. Th...In order to reduce high calibration pressure in hydroforming of components with too small radii, a method wasproposed to manufacture automotive hollow components with rectangular shape by relatively lower pressure. Theprocess is simulated and analyzed. It is thought that the friction force between the die surface and tube is a mainreason that high pressure is needed to form small radii. Using the method proposed in this paper, a petal-like sectionshape is first preformed so that the central zones of the four sides of the preform section do not contact with the diesides, thus the tube metal is easy to flow into the transition radii area in calibration stage. Moreover, a positive forcealong the sides is produced by the internal pressure, which is beneficial to overcome the friction force and push thematerial into the radii. Therefore, the pressure for forming the transition radii is greatly reduced and the componentswith small radii can be formed with relatively lower pressure. For the experimental case conducted in this paper, theforming pressure is reduced by about 28.6% than the estimated forming pressure.展开更多
The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1 :2 internal resonance were derived by using the direct method of normal for...The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1 :2 internal resonance were derived by using the direct method of normal form. In the normal,forms, quadratic and cubic nonlinearities were remained. Based on a new convenient transformation technique, the 4-dimension bifurcation equations were reduced to 3-dimension. A bifurcation equation with one-dimension was obtained. Then the bifurcation behaviors of a universal unfolding were studied by using the singularity theory. The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.展开更多
The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distri...The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.展开更多
A banner bank off the north coast of the Chengshan Headland, Shandong Peninsula, has been described on the basis of echo sounder bathymetry, side-scan sonar and high-resolution seismic data sets. The bank is in NWW di...A banner bank off the north coast of the Chengshan Headland, Shandong Peninsula, has been described on the basis of echo sounder bathymetry, side-scan sonar and high-resolution seismic data sets. The bank is in NWW direction, approximately parallel to the coastline. The bank consists of sandy silt or clayed silt. Sand waves and megaripples are observed on the north side, which result from strong tidal currents around the headland and storm waves in winter. These bed forms indicate that the bank is influenced by the modern hydrodynamics. The bank is separated from the coast and Holocene subaqueous clinoform around the Shandong Peninsula in its east part. High-resolution seismic profiles reveal that the bank was formed during two periods: the earlier seismic unit Ua, and later seismic units Ub and Uc which overlays Ua with erosional surfaces on its south side and north side, respectively. As comparing with the clinoform, the bank has a different internal architecture. In the west of the bank, however, topography and surface sediment characteristics suggest that the bank links to the clinoform. The authors propose that seismic Ua is a residual part of early clinoform deposit. After the sediments in the north and south of Ua were eroded by strong currents, the Ub and Uc started to deposit probably by a complex hydrodynamic process. These results provide new insights into the evolution of the bank and its relation with the Holocene subqueous clinoform.展开更多
An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasiz...An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasized with fixed total axial feeding length.The loading paths were analyzed together with the corresponding diagram of stress and strain.Two kinds of bursting phenomenon occurred in the experiment.Sound part can be formed whether there are wrinkles or not.It is indicated by the experiment results that the loading path has great effect on the distribution of material during axial feeding.The thickness distribution is more even for the part formed with wrinkles than that without wrinkles.展开更多
The increasingly stringent emission regulations and fuel consumption requirements have elevated the demands of internal combustion engines with higher fuel efficiency and lower emissions.It has been widely demonstrate...The increasingly stringent emission regulations and fuel consumption requirements have elevated the demands of internal combustion engines with higher fuel efficiency and lower emissions.It has been widely demonstrated that fash boiling spray can generate shorter and wider spray with improved atomization and evaporation to promote a better air-fuel mixing process.In this study,macroscopic(far-field)spray morphologies and primary breakup(near-field)characteristics of a two-hole gasoline direct injection injector are investigated under non-flash boiling and flash boiling conditions.High speed macroscopic and microscopic imaging was used to capture the overall spray structure and near-field characteristics,respectively.N-Hexane is used as the test fuel with the injection pressure ranging from 10 MPa up to 40 MPa.For sub-cooled liquid fuel sprays,increasing fuel pressure contributes to enhanced fuel atomization and evaporation.Evident collapses occurred under fare flash boiling conditions,and higher injection pressure weakened this phenomenon since the spray cone angle decreased due to a higher injection velocity.展开更多
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
基金Project(51305386)supported by the National Natural Science Foundation of ChinaProject(E2013203093)supported by the Natural Science Foundation of Hebei Province,China
文摘The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.
基金Project supported by the National Science and Technology Major Project of China(Grant No.2015ZX03001004)the National Natural Science Foundation of China(Grant Nos.61604113,61625403,61334003,61376039,61574104,and 61474088)
文摘Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian distribution, is proposed in this paper. It can appropriately capture the skin effect as well as the temperature effect of mixed CNT bundles. The results of the closed-form expression and the numerical calculation are compared with various mean diameters, standard deviations, and temperatures. It is shown that the proposed model has very high accuracy in the whole frequency range considered, with maximum errors of 1% and 2.3% for the resistance and the internal inductance, respectively. Moreover, by using the proposed model, the high-frequency electrical characteristics of mixed CNT bundles are deeply analyzed to provide helpful design guidelines for their application in future high-performance three-dimensional integrated circuits.
文摘In order to reduce high calibration pressure in hydroforming of components with too small radii, a method wasproposed to manufacture automotive hollow components with rectangular shape by relatively lower pressure. Theprocess is simulated and analyzed. It is thought that the friction force between the die surface and tube is a mainreason that high pressure is needed to form small radii. Using the method proposed in this paper, a petal-like sectionshape is first preformed so that the central zones of the four sides of the preform section do not contact with the diesides, thus the tube metal is easy to flow into the transition radii area in calibration stage. Moreover, a positive forcealong the sides is produced by the internal pressure, which is beneficial to overcome the friction force and push thematerial into the radii. Therefore, the pressure for forming the transition radii is greatly reduced and the componentswith small radii can be formed with relatively lower pressure. For the experimental case conducted in this paper, theforming pressure is reduced by about 28.6% than the estimated forming pressure.
文摘The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1 :2 internal resonance were derived by using the direct method of normal form. In the normal,forms, quadratic and cubic nonlinearities were remained. Based on a new convenient transformation technique, the 4-dimension bifurcation equations were reduced to 3-dimension. A bifurcation equation with one-dimension was obtained. Then the bifurcation behaviors of a universal unfolding were studied by using the singularity theory. The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.
基金Funded by the National Natural Science Foundation of China(50525516)
文摘The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.
基金China Geological Survey under contract No 200311000005"973" Project under contract No 2005CB422304
文摘A banner bank off the north coast of the Chengshan Headland, Shandong Peninsula, has been described on the basis of echo sounder bathymetry, side-scan sonar and high-resolution seismic data sets. The bank is in NWW direction, approximately parallel to the coastline. The bank consists of sandy silt or clayed silt. Sand waves and megaripples are observed on the north side, which result from strong tidal currents around the headland and storm waves in winter. These bed forms indicate that the bank is influenced by the modern hydrodynamics. The bank is separated from the coast and Holocene subaqueous clinoform around the Shandong Peninsula in its east part. High-resolution seismic profiles reveal that the bank was formed during two periods: the earlier seismic unit Ua, and later seismic units Ub and Uc which overlays Ua with erosional surfaces on its south side and north side, respectively. As comparing with the clinoform, the bank has a different internal architecture. In the west of the bank, however, topography and surface sediment characteristics suggest that the bank links to the clinoform. The authors propose that seismic Ua is a residual part of early clinoform deposit. After the sediments in the north and south of Ua were eroded by strong currents, the Ub and Uc started to deposit probably by a complex hydrodynamic process. These results provide new insights into the evolution of the bank and its relation with the Holocene subqueous clinoform.
基金This work is financially supported by the National Natural Science Fund for Distinguished Young Scholars ( No 50525516)the Specialized Research Fund for the Doctoral Program of Higher Edu-cation (No 20050213041)
文摘An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasized with fixed total axial feeding length.The loading paths were analyzed together with the corresponding diagram of stress and strain.Two kinds of bursting phenomenon occurred in the experiment.Sound part can be formed whether there are wrinkles or not.It is indicated by the experiment results that the loading path has great effect on the distribution of material during axial feeding.The thickness distribution is more even for the part formed with wrinkles than that without wrinkles.
基金the National Natural Science Foundation of China(No.52006140)。
文摘The increasingly stringent emission regulations and fuel consumption requirements have elevated the demands of internal combustion engines with higher fuel efficiency and lower emissions.It has been widely demonstrated that fash boiling spray can generate shorter and wider spray with improved atomization and evaporation to promote a better air-fuel mixing process.In this study,macroscopic(far-field)spray morphologies and primary breakup(near-field)characteristics of a two-hole gasoline direct injection injector are investigated under non-flash boiling and flash boiling conditions.High speed macroscopic and microscopic imaging was used to capture the overall spray structure and near-field characteristics,respectively.N-Hexane is used as the test fuel with the injection pressure ranging from 10 MPa up to 40 MPa.For sub-cooled liquid fuel sprays,increasing fuel pressure contributes to enhanced fuel atomization and evaporation.Evident collapses occurred under fare flash boiling conditions,and higher injection pressure weakened this phenomenon since the spray cone angle decreased due to a higher injection velocity.