Recently,exploiting a novel supramolecular fabrication pathway have drawn great attention.To this endeavor,we firstly designed and reported an original light-activated platform based on the internal-driven forces of m...Recently,exploiting a novel supramolecular fabrication pathway have drawn great attention.To this endeavor,we firstly designed and reported an original light-activated platform based on the internal-driven forces of macrocyclic host by hiring the pillar[5]arene as the host molecule(H)and phenazine derivatives acting as an energetic guest molecule(G).Surprisingly,after adding the H solution into G system,the intensive fluorescence emission of the G molecule rapidly decreased under the irradiation of the UV-light(254 nm)until absolutely quenching.Delightfully,different from the traditional supramolecular host-guest interaction,the fluorescent emission of G molecule could be recovered after irradiating under the nature light.In view of this interesting observations,the interaction mechanism was carefully investigated by a series of characterizations.Those results suggested that the G molecule was easily threaded into the macrocyclic cavity(H)under the internal-driven forces induced by the UV-light irradiation,forming a 1:1 host-guest complex.Moreover,taking advantage of this especial feature,the light-activated platform of host-guest complex was further applied for ink-free light-driven printing materials,exhibiting great potential in the real application.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Nos.22165027,22061039,22001214)Gansu Province Innovation Star(No.2021CXZX-183).
文摘Recently,exploiting a novel supramolecular fabrication pathway have drawn great attention.To this endeavor,we firstly designed and reported an original light-activated platform based on the internal-driven forces of macrocyclic host by hiring the pillar[5]arene as the host molecule(H)and phenazine derivatives acting as an energetic guest molecule(G).Surprisingly,after adding the H solution into G system,the intensive fluorescence emission of the G molecule rapidly decreased under the irradiation of the UV-light(254 nm)until absolutely quenching.Delightfully,different from the traditional supramolecular host-guest interaction,the fluorescent emission of G molecule could be recovered after irradiating under the nature light.In view of this interesting observations,the interaction mechanism was carefully investigated by a series of characterizations.Those results suggested that the G molecule was easily threaded into the macrocyclic cavity(H)under the internal-driven forces induced by the UV-light irradiation,forming a 1:1 host-guest complex.Moreover,taking advantage of this especial feature,the light-activated platform of host-guest complex was further applied for ink-free light-driven printing materials,exhibiting great potential in the real application.