This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in d...This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.展开更多
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c...Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.展开更多
The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how...The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.展开更多
This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmiss...This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmission efficiency within vehicle ad-hoc networks(VANETs).The roadside service unit plays the role of local controller and is in charge of selecting vehicles to forward packets within a road segment.All the vehicles state in the road.Correspondingly,a two-level design is used.The global level is distributed and adopts a ranked query scheme to collect vehicle information and determine the road segments along which a message should be forwarded.On the other hand,the local level is in charge of selecting forwarding vehicles in each road segment determined by the global level.We implement two routing algorithms of SVAO,and compare their performance in our simulation.We compare SVAO with popular ad-hoc network routing protocols,including Optimized Link State Routing(OLSR),Dynamic Source Routing(DSR),Destination Sequence Distance Vector(DSDV),and distance-based routing protocol(DB)via simulations.We consider the impact of vehicle density,speed on data transmission rate and average packet delay.The simulation results show that SVAO performs better than the others in large-scale networks or with high vehicle speeds.展开更多
With the inclusion of satellite Internet as the information infrastructure in China's "new infrastructure" category,relevant domestic industries and scientific research institutes have successively carri...With the inclusion of satellite Internet as the information infrastructure in China's "new infrastructure" category,relevant domestic industries and scientific research institutes have successively carried out the design of broadband low earth orbit(LEO) constellation systems and key technical research.As the core technology for the satellite-to-ground network communications of a broadband LEO constellation system,routing technology is extremely important for the efficient and reliable transmission of various service data.Focusing on the two important broadband LEO constellation systems in China,in-depth analysis and simulation of the high dynamics of the satellite-to-ground satellites are conducted in this paper to obtain more accurate network topology changes and characteristics;then the adaptability of the ground standard IP routing protocol to the broadband LEO constellation system is analyzed,and an LEO constellation simulation scenario is built with the Opnet software.The simulation results of the convergence performance of the standard IP routing protocol are produced.The results show that the IP protocol does not perform well for LEO satellite constellation networks.Based on the studies,some solutions are proposed to take full advantages of the characteristics of LEO satellite systems.These can also provide a reference for the choice of intersatellite routing architecture and protocol technology for broadband LEO constellation in the future development.展开更多
A novel mechanism was specified by which a node in ad hoc network may autoconfigure an IP address which is unique throughout the mobile ad hoc network. This new algorithm imposes less and constant overhead and delay i...A novel mechanism was specified by which a node in ad hoc network may autoconfigure an IP address which is unique throughout the mobile ad hoc network. This new algorithm imposes less and constant overhead and delay in obtaining an IP address, and fully utilizes the available addresses space of an ad hoc network, and independent of the existing routing protocol, and less prone to security threats. Moreover, a new Join/Leave mechanism was proposed as an enhancement to the new IP address autoconfiguration algorithm, to support the overall operation of the existing routing protocol of wireless ad hoc networks.展开更多
文摘This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.
基金supported by the National Natural Science Foundation of China(Grant No.61571303,No.61571004)the Shanghai Natural Science Foundation(Grant No.21ZR1461700)+3 种基金the Shanghai Sailing Program(Grant No.19YF1455800)the National Science and Technology Major Project of China(No.2018ZX03001031)the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries(Grant No.PAL-N201703)the National Key Research and Development Program of China-Internet of Things and Smart City Key Program(No.2019YFB2101600,NO.2019YFB2101602,No.2019YFB2101602-03).
文摘The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.
基金partially supported by National Key Research and Development Program of China(2016YFB0200400)National Natural Science Foundation of China(No.61379157)+1 种基金Program of Science and Technology of Guangdong(No.2015B010111001)MOE-CMCC Joint Research Fund of China(No.MCM20160104)
文摘This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmission efficiency within vehicle ad-hoc networks(VANETs).The roadside service unit plays the role of local controller and is in charge of selecting vehicles to forward packets within a road segment.All the vehicles state in the road.Correspondingly,a two-level design is used.The global level is distributed and adopts a ranked query scheme to collect vehicle information and determine the road segments along which a message should be forwarded.On the other hand,the local level is in charge of selecting forwarding vehicles in each road segment determined by the global level.We implement two routing algorithms of SVAO,and compare their performance in our simulation.We compare SVAO with popular ad-hoc network routing protocols,including Optimized Link State Routing(OLSR),Dynamic Source Routing(DSR),Destination Sequence Distance Vector(DSDV),and distance-based routing protocol(DB)via simulations.We consider the impact of vehicle density,speed on data transmission rate and average packet delay.The simulation results show that SVAO performs better than the others in large-scale networks or with high vehicle speeds.
文摘With the inclusion of satellite Internet as the information infrastructure in China's "new infrastructure" category,relevant domestic industries and scientific research institutes have successively carried out the design of broadband low earth orbit(LEO) constellation systems and key technical research.As the core technology for the satellite-to-ground network communications of a broadband LEO constellation system,routing technology is extremely important for the efficient and reliable transmission of various service data.Focusing on the two important broadband LEO constellation systems in China,in-depth analysis and simulation of the high dynamics of the satellite-to-ground satellites are conducted in this paper to obtain more accurate network topology changes and characteristics;then the adaptability of the ground standard IP routing protocol to the broadband LEO constellation system is analyzed,and an LEO constellation simulation scenario is built with the Opnet software.The simulation results of the convergence performance of the standard IP routing protocol are produced.The results show that the IP protocol does not perform well for LEO satellite constellation networks.Based on the studies,some solutions are proposed to take full advantages of the characteristics of LEO satellite systems.These can also provide a reference for the choice of intersatellite routing architecture and protocol technology for broadband LEO constellation in the future development.
文摘A novel mechanism was specified by which a node in ad hoc network may autoconfigure an IP address which is unique throughout the mobile ad hoc network. This new algorithm imposes less and constant overhead and delay in obtaining an IP address, and fully utilizes the available addresses space of an ad hoc network, and independent of the existing routing protocol, and less prone to security threats. Moreover, a new Join/Leave mechanism was proposed as an enhancement to the new IP address autoconfiguration algorithm, to support the overall operation of the existing routing protocol of wireless ad hoc networks.