期刊文献+
共找到832篇文章
< 1 2 42 >
每页显示 20 50 100
Federated Learning on Internet of Things:Extensive and Systematic Review
1
作者 Meenakshi Aggarwal Vikas Khullar +4 位作者 Sunita Rani Thomas AndréProla Shyama Barna Bhattacharjee Sarowar Morshed Shawon Nitin Goyal 《Computers, Materials & Continua》 SCIE EI 2024年第5期1795-1834,共40页
The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and ... The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios.The paper systematically reviewed the available literature using the PRISMA guiding principle.The study aims to provide a detailed overview of the increasing use of FL in IoT networks,including the architecture and challenges.A systematic review approach is used to collect,categorize and analyze FL-IoT-based articles.Asearch was performed in the IEEE,Elsevier,Arxiv,ACM,and WOS databases and 92 articles were finally examined.Inclusion measures were published in English and with the keywords“FL”and“IoT”.The methodology begins with an overview of recent advances in FL and the IoT,followed by a discussion of how these two technologies can be integrated.To be more specific,we examine and evaluate the capabilities of FL by talking about communication protocols,frameworks and architecture.We then present a comprehensive analysis of the use of FL in a number of key IoT applications,including smart healthcare,smart transportation,smart cities,smart industry,smart finance,and smart agriculture.The key findings from this analysis of FL IoT services and applications are also presented.Finally,we performed a comparative analysis with FL IID(independent and identical data)and non-ID,traditional centralized deep learning(DL)approaches.We concluded that FL has better performance,especially in terms of privacy protection and resource utilization.FL is excellent for preserving privacy becausemodel training takes place on individual devices or edge nodes,eliminating the need for centralized data aggregation,which poses significant privacy risks.To facilitate development in this rapidly evolving field,the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT. 展开更多
关键词 internet of things federated learning PRISMA framework of FL applications of FL data privacy COMMUNICATION
下载PDF
Behaviour recognition based on the integration of multigranular motion features in the Internet of Things
2
作者 Lizong Zhang Yiming Wang +3 位作者 Ke Yan Yi Su Nawaf Alharbe Shuxin Feng 《Digital Communications and Networks》 SCIE CSCD 2024年第3期666-675,共10页
With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analy... With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency. 展开更多
关键词 Behaviour recognition Motion features Attention mechanism internet of things Crowdsensing
下载PDF
Interworking between Modbus and internet of things platform for industrial services
3
作者 Sherzod Elamanov Hyeonseo Son +3 位作者 Bob Flynn Seong Ki Yoo Naqqash Dilshad JaeSeung Song 《Digital Communications and Networks》 SCIE CSCD 2024年第2期461-471,共11页
In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need t... In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need to apply various technologies for automation and control.This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices.One of the major protocols widely used today in industrial electronic devices is Modbus.However,data generated by Modbus devices cannot be understood by IoT applications using different protocols,so it should be applied in a couple with an IoT service layer platform.oneM2M,a global IoT standard,can play the role of interconnecting various protocols,as it provides flexible tools suitable for building an interworking framework for industrial services.Therefore,in this paper,we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards.In the proposed architecture,we introduce the way to model Modbus data as oneM2M resources,rules to map them to each other,procedures required to establish interoperable communication,and optimization methods for this architecture.We analyze our solution and provide an evaluation by implementing it based on a solar power management use case.The results demonstrate that our model is feasible and can be applied to real case scenarios. 展开更多
关键词 internet of things INTEROPERABILITY INTERWORKING MODBUS oneM2M
下载PDF
A Hybrid and Lightweight Device-to-Server Authentication Technique for the Internet of Things
4
作者 Shaha Al-Otaibi Rahim Khan +3 位作者 Hashim Ali Aftab Ahmed Khan Amir Saeed Jehad Ali 《Computers, Materials & Continua》 SCIE EI 2024年第3期3805-3823,共19页
The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective se... The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective server module.Although IoTs are cornerstones in different application domains,the device’s authenticity,i.e.,of server(s)and ordinary devices,is the most crucial issue and must be resolved on a priority basis.Therefore,various field-proven methodologies were presented to streamline the verification process of the communicating devices;however,location-aware authentication has not been reported as per our knowledge,which is a crucial metric,especially in scenarios where devices are mobile.This paper presents a lightweight and location-aware device-to-server authentication technique where the device’s membership with the nearest server is subjected to its location information along with other measures.Initially,Media Access Control(MAC)address and Advance Encryption Scheme(AES)along with a secret shared key,i.e.,λ_(i) of 128 bits,have been utilized by Trusted Authority(TA)to generate MaskIDs,which are used instead of the original ID,for every device,i.e.,server and member,and are shared in the offline phase.Secondly,TA shares a list of authentic devices,i.e.,server S_(j) and members C_(i),with every device in the IoT for the onward verification process,which is required to be executed before the initialization of the actual communication process.Additionally,every device should be located such that it lies within the coverage area of a server,and this location information is used in the authentication process.A thorough analytical analysis was carried out to check the susceptibility of the proposed and existing authentication approaches against well-known intruder attacks,i.e.,man-in-the-middle,masquerading,device,and server impersonations,etc.,especially in the IoT domain.Moreover,proposed authentication and existing state-of-the-art approaches have been simulated in the real environment of IoT to verify their performance,particularly in terms of various evaluation metrics,i.e.,processing,communication,and storage overheads.These results have verified the superiority of the proposed scheme against existing state-of-the-art approaches,preferably in terms of communication,storage,and processing costs. 展开更多
关键词 internet of things AUTHENTICITY security LOCATION communication
下载PDF
Security and Privacy in Solar Insecticidal Lamps Internet of Things:Requirements and Challenges
5
作者 Qingsong Zhao Lei Shu +3 位作者 Kailiang Li Mohamed Amine Ferrag Ximeng Liu Yanbin Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期58-73,共16页
Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the... Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT. 展开更多
关键词 CHALLENGES internet of things(IoT) privacy and security security requirements solar insecticidal lamps(SIL)
下载PDF
Internet of Things Authentication Protocols: Comparative Study
6
作者 Souhayla Dargaoui Mourade Azrour +3 位作者 Ahmad ElAllaoui Azidine Guezzaz Abdulatif Alabdulatif Abdullah Alnajim 《Computers, Materials & Continua》 SCIE EI 2024年第4期65-91,共27页
Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is ... Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions. 展开更多
关键词 ATTACKS CRYPTOGRAPHY internet of things SECURITY AUTHENTICATION
下载PDF
Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things
7
作者 Yaguang Lin Xiaoming Wang +1 位作者 Liang Wang Pengfei Wan 《Digital Communications and Networks》 SCIE CSCD 2024年第3期655-665,共11页
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for... As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method. 展开更多
关键词 Social internet of things Information diffusion Dynamics modeling Trend prediction Optimal control
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
8
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power internet of things Object model High concurrency access Zero trust mechanism Multi-source heterogeneous data
下载PDF
Privacy-Preserving Information Fusion Technique for Device to Server-Enabled Communication in the Internet of Things:A Hybrid Approach
9
作者 Amal Al-Rasheed Rahim Khan +3 位作者 Tahani Alsaed Mahwish Kundi Mohamad Hanif Md.Saad Mahidur R.Sarker 《Computers, Materials & Continua》 SCIE EI 2024年第7期1305-1323,共19页
Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both cus... Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures. 展开更多
关键词 internet of things information fusion differential privacy dynamic programming Laplace function
下载PDF
An Optimized Approach to Deep Learning for Botnet Detection and Classification for Cybersecurity in Internet of Things Environment
10
作者 Abdulrahman Alzahrani 《Computers, Materials & Continua》 SCIE EI 2024年第8期2331-2349,共19页
The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent ... The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process. 展开更多
关键词 Botnet detection internet of things gorilla troops optimizer hyperparameter tuning intrusion detection system
下载PDF
An Efficient and Provably Secure SM2 Key-Insulated Signature Scheme for Industrial Internet of Things
11
作者 Senshan Ouyang Xiang Liu +3 位作者 Lei Liu Shangchao Wang Baichuan Shao Yang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期903-915,共13页
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar... With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle. 展开更多
关键词 KEY-INSULATED SM2 algorithm digital signature Industrial internet of things(IIoT) provable security
下载PDF
Internet of Things Enabled DDoS Attack Detection Using Pigeon Inspired Optimization Algorithm with Deep Learning Approach
12
作者 Turki Ali Alghamdi Saud S.Alotaibi 《Computers, Materials & Continua》 SCIE EI 2024年第9期4047-4064,共18页
Internet of Things(IoTs)provides better solutions in various fields,namely healthcare,smart transportation,home,etc.Recognizing Denial of Service(DoS)outbreaks in IoT platforms is significant in certifying the accessi... Internet of Things(IoTs)provides better solutions in various fields,namely healthcare,smart transportation,home,etc.Recognizing Denial of Service(DoS)outbreaks in IoT platforms is significant in certifying the accessibility and integrity of IoT systems.Deep learning(DL)models outperform in detecting complex,non-linear relationships,allowing them to effectually severe slight deviations fromnormal IoT activities that may designate a DoS outbreak.The uninterrupted observation and real-time detection actions of DL participate in accurate and rapid detection,permitting proactive reduction events to be executed,hence securing the IoT network’s safety and functionality.Subsequently,this study presents pigeon-inspired optimization with a DL-based attack detection and classification(PIODL-ADC)approach in an IoT environment.The PIODL-ADC approach implements a hyperparameter-tuned DL method for Distributed Denial-of-Service(DDoS)attack detection in an IoT platform.Initially,the PIODL-ADC model utilizes Z-score normalization to scale input data into a uniformformat.For handling the convolutional and adaptive behaviors of IoT,the PIODL-ADCmodel employs the pigeon-inspired optimization(PIO)method for feature selection to detect the related features,considerably enhancing the recognition’s accuracy.Also,the Elman Recurrent Neural Network(ERNN)model is utilized to recognize and classify DDoS attacks.Moreover,reptile search algorithm(RSA)based hyperparameter tuning is employed to improve the precision and robustness of the ERNN method.A series of investigational validations is made to ensure the accomplishment of the PIODL-ADC method.The experimental outcome exhibited that the PIODL-ADC method shows greater accomplishment when related to existing models,with a maximum accuracy of 99.81%. 展开更多
关键词 internet of things denial of service deep learning reptile search algorithm feature selection
下载PDF
RL and AHP-Based Multi-Timescale Multi-Clock Source Time Synchronization for Distribution Power Internet of Things
13
作者 Jiangang Lu Ruifeng Zhao +2 位作者 Zhiwen Yu Yue Dai Kaiwen Zeng 《Computers, Materials & Continua》 SCIE EI 2024年第3期4453-4469,共17页
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli... Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference. 展开更多
关键词 Multi-clock source time synchronization(TS) power internet of things reinforcement learning analytic hierarchy process
下载PDF
Power-Domain Collision-Tolerant Random Access Method with Auxiliary Beam for Satellite Internet of Things:A New Solution
14
作者 Xu Yuanyuan Liu Ziwei +1 位作者 Bian Dongming Zhang Gengxin 《China Communications》 SCIE CSCD 2024年第8期236-248,共13页
There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The re... There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden. 展开更多
关键词 beamforming non-orthogonal multiple access random access satellite internet of things
下载PDF
Artificial intelligence in physiological characteristics recognition for internet of things authentication
15
作者 Zhimin Zhang Huansheng Ning +2 位作者 Fadi Farha Jianguo Ding Kim-Kwang Raymond Choo 《Digital Communications and Networks》 SCIE CSCD 2024年第3期740-755,共16页
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and sm... Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions. 展开更多
关键词 Physiological characteristics recognition Artificial intelligence internet of things Biological-driven authentication
下载PDF
ResNeSt-biGRU: An Intrusion Detection Model Based on Internet of Things
16
作者 Yan Xiang Daofeng Li +2 位作者 Xinyi Meng Chengfeng Dong Guanglin Qin 《Computers, Materials & Continua》 SCIE EI 2024年第4期1005-1023,共19页
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has... The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems. 展开更多
关键词 internet of things cyberattack intrusion detection internet security
下载PDF
Deep Learning-Based Secure Transmission Strategy with Sensor-Transmission-Computing Linkage for Power Internet of Things
17
作者 Bin Li Linghui Kong +3 位作者 Xiangyi Zhang Bochuo Kou Hui Yu Bowen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3267-3282,共16页
The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power g... The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery. 展开更多
关键词 Secure transmission deep learning power internet of things sensor-transmission-computing
下载PDF
A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
18
作者 Aer Sileng Qi Chenhao 《China Communications》 SCIE CSCD 2024年第8期18-29,共12页
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it... Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods. 展开更多
关键词 automatic modulation classification(AMC) deep learning(DL) few-shot learning internet of things(IoT)
下载PDF
Vector Dominance with Threshold Searchable Encryption (VDTSE) for the Internet of Things
19
作者 Jingjing Nie Zhenhua Chen 《Computers, Materials & Continua》 SCIE EI 2024年第6期4763-4779,共17页
The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which ... The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme. 展开更多
关键词 internet of things(IoT) internet of Medical things(IoMT) vector dominance with threshold searchable encryption(VDTSE) threshold comparison electronic healthcare
下载PDF
Potential Benefits and Obstacles of the Use of Internet of Things in Saudi Universities: Empirical Study
20
作者 Najmah Adel Fallatah Fahad Mahmoud Ghabban +4 位作者 Omair Ameerbakhsh Ibrahim Alfadli Wael Ghazy Alheadary Salem Sulaiman Alatawi Ashwaq Hasen Al-Shehri 《Advances in Internet of Things》 2024年第1期1-20,共20页
Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of thi... Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities. 展开更多
关键词 internet of things (IoT) M2M Factors Obstacles Potential Benefits UNIVERSITIES
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部