The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which ...The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.展开更多
Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the...Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.展开更多
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it...Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.展开更多
Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of thi...Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities.展开更多
Nowadays,Multi Robotic System(MRS)consisting of different robot shapes,sizes and capabilities has received significant attention from researchers and are being deployed in a variety of real-world applications.From sen...Nowadays,Multi Robotic System(MRS)consisting of different robot shapes,sizes and capabilities has received significant attention from researchers and are being deployed in a variety of real-world applications.From sensors and actuators improved by communication technologies to powerful computing systems utilizing advanced Artificial Intelligence(AI)algorithms have rapidly driven the development of MRS,so the Internet of Things(IoT)in MRS has become a new topic,namely the Internet of Robotic Things(IoRT).This paper summarizes a comprehensive survey of state-of-the-art technologies for mobile robots,including general architecture,benefits,challenges,practical applications,and future research directions.In addition,remarkable research of i)multirobot navigation,ii)network architecture,routing protocols and communications,and iii)coordination among robots as well as data analysis via external computing(cloud,fog,edge,edge-cloud)are merged with the IoRT architecture according to their applicability.Moreover,security is a long-term challenge for IoRT because of various attack vectors,security flaws,and vulnerabilities.Security threats,attacks,and existing solutions based on IoRT architectures are also under scrutiny.Moreover,the identification of environmental situations that are crucial for all types of IoRT applications,such as the detection of objects,human,and obstacles,is also critically reviewed.Finally,future research directions are given by analyzing the challenges of IoRT in mobile robots.展开更多
Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,...Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,necessitating the development of automatic logging detection systems in forests.This paper proposesthe use of long-range,low-powered,and smart Internet of Things(IoT)nodes to enhance forest monitoringcapabilities.The research framework involves developing IoT devices for forest sound classification andtransmitting each node’s status to a gateway at the forest base station,which further sends the obtained datathrough cellular connectivity to a cloud server.The key issues addressed in this work include sensor and boardselection,Machine Learning(ML)model development for audio classification,TinyML implementation on amicrocontroller,choice of communication protocol,gateway selection,and power consumption optimization.Unlike the existing solutions,the developed node prototype uses an array of two microphone sensors forredundancy,and an ensemble network consisting of Long Short-Term Memory(LSTM)and ConvolutionalNeural Network(CNN)models for improved classification accuracy.The model outperforms LSTM and CNNmodels when used independently and also gave 88%accuracy after quantization.Notably,this solutiondemonstrates cost efficiency and high potential for scalability.展开更多
In this paper,the application of transportation systems in realtime traffic conditions is evaluated with data handling representations.The proposed method is designed in such a way as to detect the number of loads tha...In this paper,the application of transportation systems in realtime traffic conditions is evaluated with data handling representations.The proposed method is designed in such a way as to detect the number of loads that are present in a vehicle where functionality tasks are computed in the system.Compared to the existing approach,the design model in the proposed method is made by dividing the computing areas into several cluster regions,thereby reducing the complex monitoring system where control errors are minimized.Furthermore,a route management technique is combined with Artificial Intelligence(AI)algorithm to transmit the data to appropriate central servers.Therefore,the combined objective case studies are examined as minimization and maximization criteria,thus increasing the efficiency of the proposed method.Finally,four scenarios are chosen to investigate the projected design’s effectiveness.In all simulated metrics,the proposed approach provides better operational outcomes for an average percentage of 97,thereby reducing the amount of traffic in real-time conditions.展开更多
The massive Internet of Things(IoT)comprises different gateways(GW)covering a given region of a massive number of connected devices with sensors.In IoT networks,transmission interference is observed when different sen...The massive Internet of Things(IoT)comprises different gateways(GW)covering a given region of a massive number of connected devices with sensors.In IoT networks,transmission interference is observed when different sensor devices(SD)try to send information to a single GW.This is mitigated by allotting various channels to adjoining GWs.Furthermore,SDs are permitted to associate with anyGWin a network,naturally choosing the one with a higher received signal strength indicator(RSSI),regardless of whether it is the ideal choice for network execution.Finding an appropriate GW to optimize the performance of IoT systems is a difficult task given the complicated conditions among GWs and SDs.Recently,in remote IoT networks,the utilization of machine learning(ML)strategies has arisen as a viable answer to determine the effect of various models in the system,and reinforcement learning(RL)is one of these ML techniques.Therefore,this paper proposes the use of an RL algorithm for GW determination and association in IoT networks.For this purpose,this study allows GWs and SDs with intelligence,through executing the multi-armed bandit(MAB)calculation,to investigate and determine the optimal GW with which to associate.In this paper,rigorous mathematical calculations are performed for this purpose and evaluate our proposed mechanism over randomly generated situations,which include different IoT network topologies.The evaluation results indicate that our intelligentMAB-based mechanism enhances the association as compared to state-of-the-art(RSSI-based)and related research approaches.展开更多
Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining ...Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge.However,due to the computational resources being limited,an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms.Therefore,designing and developing a lightweight detection mechanism is crucial.To address the aforementioned challenges,a new lightweight IDS approach is developed to effectively combat a diverse range of cyberattacks in IoMT networks.The proposed anomaly-based IDS is divided into three steps:pre-processing,feature selection,and decision.In the pre-processing phase,data cleaning and normalization are performed.In the feature selection step,the proposed approach uses two data-driven kernel techniques:kernel principal component analysis and kernel partial least square techniques to reduce the dimension of extracted features and to ameliorate the detection results.Therefore,in decision step,in order to classify whether the traffic flow is normal or malicious the kernel extreme learning machine is used.To check the efficiency of the developed detection scheme,a modern IoMT dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss the achieved results.The proposed method achieved 99.9%accuracy,99.8%specificity,100%Sensitivity,99.9 F-score.展开更多
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver...The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%.展开更多
With the increased emphasis on data security in the Internet of Things(IoT), blockchain has received more and more attention.Due to the computing consuming characteristics of blockchain, mobile edge computing(MEC) is ...With the increased emphasis on data security in the Internet of Things(IoT), blockchain has received more and more attention.Due to the computing consuming characteristics of blockchain, mobile edge computing(MEC) is integrated into IoT.However, how to efficiently use edge computing resources to process the computing tasks of blockchain from IoT devices has not been fully studied.In this paper, the MEC and blockchain-enhanced IoT is considered.The transactions recording the data or other application information are generated by the IoT devices, and they are offloaded to the MEC servers to join the blockchain.The practical Byzantine fault tolerance(PBFT) consensus mechanism is used among all the MEC servers which are also the blockchain nodes, and the latency of the consensus process is modeled with the consideration of characteristics of the wireless network.The joint optimization problem of serving base station(BS) selection and wireless transmission resources allocation is modeled as a Markov decision process(MDP), and the long-term system utility is defined based on task reward, credit value, the latency of infrastructure layer and blockchain layer, and computing cost.A double deep Q learning(DQN) based transactions offloading algorithm(DDQN-TOA) is proposed, and simulation results show the advantages of the proposed algorithm in comparison to other methods.展开更多
The study investigated the impact of the Internet of Things in manufacturing management. Specifically, the study examined how IoT implementation and management affect organizational efficiency in Camanov Ltd.;and to w...The study investigated the impact of the Internet of Things in manufacturing management. Specifically, the study examined how IoT implementation and management affect organizational efficiency in Camanov Ltd.;and to what extent IoT implementation contributes to the saving of cost and time of the organization. The research design is a survey. The population of this study consisted of all 141 staff of Camanov Ltd. Port Harcourt. Since the population is not large, the researcher conducted a census of all, and 126 staff completed a structured questionnaire. The two research questions were analyzed using simple percentages and all two hypotheses were tested using sample proportion statistics (Z test) at a 0.05 level of significance. The result showed that the Internet of Things has a significant impact on organizational efficiency in Camanov Ltd. (Z = 4.73);and that the Internet of Things significantly contributes toward saving cost and time of the organization Camanov Ltd (Z = 4.95). It was recommended that organizations should encourage training of personnel in the improved limitless possibility of information gathered from the Internet of Things framework which supports planning, budgeting and monitoring approaches, providing more reliable information to support actions, in particular in the decision-making process, to enhance productivity.展开更多
One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify eve...One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify everything in our world under a common infrastructure, giving us not only control of things around us, but also keeping us informed of the state of the things. In Light of this, present study addresses IoT concepts through systematic review of scholarly research papers, corporate white papers, professional discussions with experts and online databases. Moreover this research article focuses on definitions, geneses, basic requirements, characteristics and aliases of Internet of Things. The main objective of this paper is to provide an overview of Internet of Things, architectures, and vital technologies and their usages in our daily life. However, this manuscript will give good comprehension for the new researchers, who want to do research in this field of Internet of Things (Technological GOD) and facilitate knowledge accumulation in efficiently.展开更多
As one of the most important uses of the Internet of things (IOT), the intelligent household is becoming more and more popular. There are many fragile nodes in the intelligent household and they are bound to encounter...As one of the most important uses of the Internet of things (IOT), the intelligent household is becoming more and more popular. There are many fragile nodes in the intelligent household and they are bound to encounter some potential risks of hostile attacks, such as eavesdropping, denial of service, error instructs, non-authorized access or fabrication and others. This paper presents a method of design and implement of secure nodes for the intelligent household based on the IOT technology, besides giving the hardware model of nodes, the management of key, the access authentication of network, the transmission of encrypted data, and the alarm based on intrusion detection and other security mechanisms. That is, to improve the security of the based-IOT intelligent household from the viewpoint of nodes security. A test platform is built and the results of simulation prove that the proposed method can effectively improve the security of the intelligent household from access safety and transmission security.展开更多
In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost e...In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.展开更多
In recent years,the Internet of Things(IoT)technology has been considered one of the most attractive fields for researchers due to its aspirations and implications for society and life as a whole.The IoT environment c...In recent years,the Internet of Things(IoT)technology has been considered one of the most attractive fields for researchers due to its aspirations and implications for society and life as a whole.The IoT environment contains vast numbers of devices,equipment,and heterogeneous users who generate massive amounts of data.Furthermore,things’entry into and exit fromIoT systems occur dynamically,changing the topology and content of IoT networks very quickly.Therefore,managing IoT environments is among the most pressing challenges.This paper proposes an adaptive and dynamic scheme for managing IoT environments is proposed.This management scheme depends on the use of previous management methodologies,considering two main factors.The first factor is network status,which is determined in real-time.The second factor is a management method’s suitability according to its desired administration.To test the proposed management scheme,a simulation environment is created using NS3.The metrics used to measure the management scheme performance are bandwidth consumption,energy consumption,packet loss,throughput,delay,usage rate of individualmanagement techniques,and transformation.The simulation results prove that the proposed management scheme outperformed the individual 6LowPANSNMP,CoAP,and LWM2M management schemes.展开更多
Determining the application and version of nodes in the Internet of Things (IoT) is very important for warning about and managing vulnerabilities in the IoT. This article defines the attributes for determining the a...Determining the application and version of nodes in the Internet of Things (IoT) is very important for warning about and managing vulnerabilities in the IoT. This article defines the attributes for determining the application and version of nodes in the roT. By improving the structure of the Internet web crawler, which obtains raw data from nodes, we can obtain data from nodes in the IoT. We improve on the existing strategy, in which only determinations are stored, by also storing downloaded raw data locally in MongoDB. This stored raw data can be conveniently used to determine application type and node version when a new determination method emerges or when there is a new application type or node version. In such instances, the crawler does not have to scan the Internet again. We show through experimentation that our crawler can crawl the loT and obtain data necessary for determining the application type and node version.展开更多
Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decisi...Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decision-making. Similarly, accessing stored soil moisture data in near-real-time is also essential for making timely farming and management decisions, such as where, when, and how much irrigation to apply. Access to reliable communication systems and delivery of real-time data can be affected by its availability near production fields. Therefore, soil moisture monitoring systems with real-time data functionality that can meet the needs of farmers at an affordable cost are currently needed. The objective of the study was to develop and fieldtest affordable cell-phone-based Internet of things (IoT) systems for soil moisture monitoring. These IoT systems were designed using low-cost hardware components and open-source software to transmit soil moisture data from the Watermark 200SS or ECH<sub>2</sub>O EC-5 sensors. These monitoring systems utilized either Particle Electron or Particle Proton Arduino-compatible devices for data communication. The IoT soil moisture monitoring systems have been deployed and operated successfully over the last three years in South Carolina.展开更多
the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objec...the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objects,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which is the integration of things with the world of Internet, by adding hardware or/and software to be smart and so be able to communicate with each other and participate effectively in all aspects of daily life,</span><span style="font-family:""> </span><span style="font-family:Verdana;">so enabling new forms of communication between people and things, and between things themselves, that’s will change the traditional life into a high style of living. But it won’t be easy, because there are still many challenges an</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> issues that need to be addressed and have to be viewed from various aspects to realize </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> full potential. The main objective of this review paper will provide the reader with a detailed discussion from a technological and social perspective. The various IoT challenges and issues, definition and architecture were discussed. Furthermore, a description of several sensors and actuators and </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> smart communication. Also, the most important application areas of IoT were presented. This work will help readers and researchers understand the IoT and its potential application in the real world.展开更多
Internet of things (IoT) has become an interesting topic in the field of technological research. It is basically interconnecting of devices with each other over the internet. Beside its general use in terms of autonom...Internet of things (IoT) has become an interesting topic in the field of technological research. It is basically interconnecting of devices with each other over the internet. Beside its general use in terms of autonomous cars and smart homes, but some of the best applications of IoT technology in fields of health care monitoring is worth mentioning. The main purpose of this research work is to provide comport services for patients. It can be used to promote basic nursing care by improving the quality of care and patient safety from patient home environment. Rural area of a country lacks behind the proper patient monitoring system. So, remote monitoring and prescribing by sharing medical information in an authenticated manner is very effective for betterment of medical facilities in rural area. We have proposed a healthcare system which can analyze ECG report using supervise machine learning techniques. Analyzing report can be stored in cloud platform which can be further used to prescribe by the experienced medical practitioner. For performance evaluation, ECG data is analyzed using six supervised machine learning algorithms. Data sets are divided into two groups: 75 percent data for training the model and rest 25 percent data for testing. To avoid any kind of anomalies or repetitions, cross validation and random train-test split was used to obtain the result as accurate as possible.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61872289 and 62172266in part by the Henan Key Laboratory of Network Cryptography Technology LNCT2020-A07the Guangxi Key Laboratory of Trusted Software under Grant No.KX202308.
文摘The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.
基金supported in part by the National Natural Science Foundation of China (62072248, 62072247)the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)3060)。
文摘Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
文摘Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities.
基金This research was supported by the Ministry of Higher Education,Malaysia(MoHE)through Fundamental Research Grant Scheme(FRGS/1/2021/TK0/UTAR/02/9)The work was also supported by the Universiti Tunku Abdul Rahman(UTAR),Malaysia,under UTAR Research Fund(UTARRF)(IPSR/RMC/UTARRF/2021C1/T05).
文摘Nowadays,Multi Robotic System(MRS)consisting of different robot shapes,sizes and capabilities has received significant attention from researchers and are being deployed in a variety of real-world applications.From sensors and actuators improved by communication technologies to powerful computing systems utilizing advanced Artificial Intelligence(AI)algorithms have rapidly driven the development of MRS,so the Internet of Things(IoT)in MRS has become a new topic,namely the Internet of Robotic Things(IoRT).This paper summarizes a comprehensive survey of state-of-the-art technologies for mobile robots,including general architecture,benefits,challenges,practical applications,and future research directions.In addition,remarkable research of i)multirobot navigation,ii)network architecture,routing protocols and communications,and iii)coordination among robots as well as data analysis via external computing(cloud,fog,edge,edge-cloud)are merged with the IoRT architecture according to their applicability.Moreover,security is a long-term challenge for IoRT because of various attack vectors,security flaws,and vulnerabilities.Security threats,attacks,and existing solutions based on IoRT architectures are also under scrutiny.Moreover,the identification of environmental situations that are crucial for all types of IoRT applications,such as the detection of objects,human,and obstacles,is also critically reviewed.Finally,future research directions are given by analyzing the challenges of IoRT in mobile robots.
基金funded by Climate Change AI(2023 innovation grant-https://www.climatechange.ai/innovation_grants).
文摘Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,necessitating the development of automatic logging detection systems in forests.This paper proposesthe use of long-range,low-powered,and smart Internet of Things(IoT)nodes to enhance forest monitoringcapabilities.The research framework involves developing IoT devices for forest sound classification andtransmitting each node’s status to a gateway at the forest base station,which further sends the obtained datathrough cellular connectivity to a cloud server.The key issues addressed in this work include sensor and boardselection,Machine Learning(ML)model development for audio classification,TinyML implementation on amicrocontroller,choice of communication protocol,gateway selection,and power consumption optimization.Unlike the existing solutions,the developed node prototype uses an array of two microphone sensors forredundancy,and an ensemble network consisting of Long Short-Term Memory(LSTM)and ConvolutionalNeural Network(CNN)models for improved classification accuracy.The model outperforms LSTM and CNNmodels when used independently and also gave 88%accuracy after quantization.Notably,this solutiondemonstrates cost efficiency and high potential for scalability.
基金funded by the Research Management Centre(RMC),Universiti Malaysia Sabah,through the Journal Article Fund UMS/PPI-DPJ1.
文摘In this paper,the application of transportation systems in realtime traffic conditions is evaluated with data handling representations.The proposed method is designed in such a way as to detect the number of loads that are present in a vehicle where functionality tasks are computed in the system.Compared to the existing approach,the design model in the proposed method is made by dividing the computing areas into several cluster regions,thereby reducing the complex monitoring system where control errors are minimized.Furthermore,a route management technique is combined with Artificial Intelligence(AI)algorithm to transmit the data to appropriate central servers.Therefore,the combined objective case studies are examined as minimization and maximization criteria,thus increasing the efficiency of the proposed method.Finally,four scenarios are chosen to investigate the projected design’s effectiveness.In all simulated metrics,the proposed approach provides better operational outcomes for an average percentage of 97,thereby reducing the amount of traffic in real-time conditions.
基金Funded by Institutional Fund Projects underGrant No.RG-2-611-42 by Ministry of Education and King Abdulaziz University,Jeddah,Saudi Arabia(A.O.A.).
文摘The massive Internet of Things(IoT)comprises different gateways(GW)covering a given region of a massive number of connected devices with sensors.In IoT networks,transmission interference is observed when different sensor devices(SD)try to send information to a single GW.This is mitigated by allotting various channels to adjoining GWs.Furthermore,SDs are permitted to associate with anyGWin a network,naturally choosing the one with a higher received signal strength indicator(RSSI),regardless of whether it is the ideal choice for network execution.Finding an appropriate GW to optimize the performance of IoT systems is a difficult task given the complicated conditions among GWs and SDs.Recently,in remote IoT networks,the utilization of machine learning(ML)strategies has arisen as a viable answer to determine the effect of various models in the system,and reinforcement learning(RL)is one of these ML techniques.Therefore,this paper proposes the use of an RL algorithm for GW determination and association in IoT networks.For this purpose,this study allows GWs and SDs with intelligence,through executing the multi-armed bandit(MAB)calculation,to investigate and determine the optimal GW with which to associate.In this paper,rigorous mathematical calculations are performed for this purpose and evaluate our proposed mechanism over randomly generated situations,which include different IoT network topologies.The evaluation results indicate that our intelligentMAB-based mechanism enhances the association as compared to state-of-the-art(RSSI-based)and related research approaches.
基金supported by the Deanship of Scientific Research at the University of Tabuk through Research No.S-1443-0111.
文摘Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge.However,due to the computational resources being limited,an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms.Therefore,designing and developing a lightweight detection mechanism is crucial.To address the aforementioned challenges,a new lightweight IDS approach is developed to effectively combat a diverse range of cyberattacks in IoMT networks.The proposed anomaly-based IDS is divided into three steps:pre-processing,feature selection,and decision.In the pre-processing phase,data cleaning and normalization are performed.In the feature selection step,the proposed approach uses two data-driven kernel techniques:kernel principal component analysis and kernel partial least square techniques to reduce the dimension of extracted features and to ameliorate the detection results.Therefore,in decision step,in order to classify whether the traffic flow is normal or malicious the kernel extreme learning machine is used.To check the efficiency of the developed detection scheme,a modern IoMT dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss the achieved results.The proposed method achieved 99.9%accuracy,99.8%specificity,100%Sensitivity,99.9 F-score.
文摘The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%.
基金Supported by the National Key Research and Development Program of China(No.2020YFC1807903)the Natural Science Foundation of Beijing Municipality(No.L192002)。
文摘With the increased emphasis on data security in the Internet of Things(IoT), blockchain has received more and more attention.Due to the computing consuming characteristics of blockchain, mobile edge computing(MEC) is integrated into IoT.However, how to efficiently use edge computing resources to process the computing tasks of blockchain from IoT devices has not been fully studied.In this paper, the MEC and blockchain-enhanced IoT is considered.The transactions recording the data or other application information are generated by the IoT devices, and they are offloaded to the MEC servers to join the blockchain.The practical Byzantine fault tolerance(PBFT) consensus mechanism is used among all the MEC servers which are also the blockchain nodes, and the latency of the consensus process is modeled with the consideration of characteristics of the wireless network.The joint optimization problem of serving base station(BS) selection and wireless transmission resources allocation is modeled as a Markov decision process(MDP), and the long-term system utility is defined based on task reward, credit value, the latency of infrastructure layer and blockchain layer, and computing cost.A double deep Q learning(DQN) based transactions offloading algorithm(DDQN-TOA) is proposed, and simulation results show the advantages of the proposed algorithm in comparison to other methods.
文摘The study investigated the impact of the Internet of Things in manufacturing management. Specifically, the study examined how IoT implementation and management affect organizational efficiency in Camanov Ltd.;and to what extent IoT implementation contributes to the saving of cost and time of the organization. The research design is a survey. The population of this study consisted of all 141 staff of Camanov Ltd. Port Harcourt. Since the population is not large, the researcher conducted a census of all, and 126 staff completed a structured questionnaire. The two research questions were analyzed using simple percentages and all two hypotheses were tested using sample proportion statistics (Z test) at a 0.05 level of significance. The result showed that the Internet of Things has a significant impact on organizational efficiency in Camanov Ltd. (Z = 4.73);and that the Internet of Things significantly contributes toward saving cost and time of the organization Camanov Ltd (Z = 4.95). It was recommended that organizations should encourage training of personnel in the improved limitless possibility of information gathered from the Internet of Things framework which supports planning, budgeting and monitoring approaches, providing more reliable information to support actions, in particular in the decision-making process, to enhance productivity.
文摘One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify everything in our world under a common infrastructure, giving us not only control of things around us, but also keeping us informed of the state of the things. In Light of this, present study addresses IoT concepts through systematic review of scholarly research papers, corporate white papers, professional discussions with experts and online databases. Moreover this research article focuses on definitions, geneses, basic requirements, characteristics and aliases of Internet of Things. The main objective of this paper is to provide an overview of Internet of Things, architectures, and vital technologies and their usages in our daily life. However, this manuscript will give good comprehension for the new researchers, who want to do research in this field of Internet of Things (Technological GOD) and facilitate knowledge accumulation in efficiently.
文摘As one of the most important uses of the Internet of things (IOT), the intelligent household is becoming more and more popular. There are many fragile nodes in the intelligent household and they are bound to encounter some potential risks of hostile attacks, such as eavesdropping, denial of service, error instructs, non-authorized access or fabrication and others. This paper presents a method of design and implement of secure nodes for the intelligent household based on the IOT technology, besides giving the hardware model of nodes, the management of key, the access authentication of network, the transmission of encrypted data, and the alarm based on intrusion detection and other security mechanisms. That is, to improve the security of the based-IOT intelligent household from the viewpoint of nodes security. A test platform is built and the results of simulation prove that the proposed method can effectively improve the security of the intelligent household from access safety and transmission security.
文摘In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.
基金funded by the Taif University Researchers Supporting Project No.(TURSP-2020/60),Taif University,Taif,Saudi Arabia.
文摘In recent years,the Internet of Things(IoT)technology has been considered one of the most attractive fields for researchers due to its aspirations and implications for society and life as a whole.The IoT environment contains vast numbers of devices,equipment,and heterogeneous users who generate massive amounts of data.Furthermore,things’entry into and exit fromIoT systems occur dynamically,changing the topology and content of IoT networks very quickly.Therefore,managing IoT environments is among the most pressing challenges.This paper proposes an adaptive and dynamic scheme for managing IoT environments is proposed.This management scheme depends on the use of previous management methodologies,considering two main factors.The first factor is network status,which is determined in real-time.The second factor is a management method’s suitability according to its desired administration.To test the proposed management scheme,a simulation environment is created using NS3.The metrics used to measure the management scheme performance are bandwidth consumption,energy consumption,packet loss,throughput,delay,usage rate of individualmanagement techniques,and transformation.The simulation results prove that the proposed management scheme outperformed the individual 6LowPANSNMP,CoAP,and LWM2M management schemes.
基金supported by the ZTE Corporation and University Joint Research Project under Grant No.CON1307100001the National High Technology Research and Development Program of China under Grant No.2013AA013602
文摘Determining the application and version of nodes in the Internet of Things (IoT) is very important for warning about and managing vulnerabilities in the IoT. This article defines the attributes for determining the application and version of nodes in the roT. By improving the structure of the Internet web crawler, which obtains raw data from nodes, we can obtain data from nodes in the IoT. We improve on the existing strategy, in which only determinations are stored, by also storing downloaded raw data locally in MongoDB. This stored raw data can be conveniently used to determine application type and node version when a new determination method emerges or when there is a new application type or node version. In such instances, the crawler does not have to scan the Internet again. We show through experimentation that our crawler can crawl the loT and obtain data necessary for determining the application type and node version.
文摘Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decision-making. Similarly, accessing stored soil moisture data in near-real-time is also essential for making timely farming and management decisions, such as where, when, and how much irrigation to apply. Access to reliable communication systems and delivery of real-time data can be affected by its availability near production fields. Therefore, soil moisture monitoring systems with real-time data functionality that can meet the needs of farmers at an affordable cost are currently needed. The objective of the study was to develop and fieldtest affordable cell-phone-based Internet of things (IoT) systems for soil moisture monitoring. These IoT systems were designed using low-cost hardware components and open-source software to transmit soil moisture data from the Watermark 200SS or ECH<sub>2</sub>O EC-5 sensors. These monitoring systems utilized either Particle Electron or Particle Proton Arduino-compatible devices for data communication. The IoT soil moisture monitoring systems have been deployed and operated successfully over the last three years in South Carolina.
文摘the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objects,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which is the integration of things with the world of Internet, by adding hardware or/and software to be smart and so be able to communicate with each other and participate effectively in all aspects of daily life,</span><span style="font-family:""> </span><span style="font-family:Verdana;">so enabling new forms of communication between people and things, and between things themselves, that’s will change the traditional life into a high style of living. But it won’t be easy, because there are still many challenges an</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> issues that need to be addressed and have to be viewed from various aspects to realize </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> full potential. The main objective of this review paper will provide the reader with a detailed discussion from a technological and social perspective. The various IoT challenges and issues, definition and architecture were discussed. Furthermore, a description of several sensors and actuators and </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> smart communication. Also, the most important application areas of IoT were presented. This work will help readers and researchers understand the IoT and its potential application in the real world.
文摘Internet of things (IoT) has become an interesting topic in the field of technological research. It is basically interconnecting of devices with each other over the internet. Beside its general use in terms of autonomous cars and smart homes, but some of the best applications of IoT technology in fields of health care monitoring is worth mentioning. The main purpose of this research work is to provide comport services for patients. It can be used to promote basic nursing care by improving the quality of care and patient safety from patient home environment. Rural area of a country lacks behind the proper patient monitoring system. So, remote monitoring and prescribing by sharing medical information in an authenticated manner is very effective for betterment of medical facilities in rural area. We have proposed a healthcare system which can analyze ECG report using supervise machine learning techniques. Analyzing report can be stored in cloud platform which can be further used to prescribe by the experienced medical practitioner. For performance evaluation, ECG data is analyzed using six supervised machine learning algorithms. Data sets are divided into two groups: 75 percent data for training the model and rest 25 percent data for testing. To avoid any kind of anomalies or repetitions, cross validation and random train-test split was used to obtain the result as accurate as possible.