The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective se...The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective server module.Although IoTs are cornerstones in different application domains,the device’s authenticity,i.e.,of server(s)and ordinary devices,is the most crucial issue and must be resolved on a priority basis.Therefore,various field-proven methodologies were presented to streamline the verification process of the communicating devices;however,location-aware authentication has not been reported as per our knowledge,which is a crucial metric,especially in scenarios where devices are mobile.This paper presents a lightweight and location-aware device-to-server authentication technique where the device’s membership with the nearest server is subjected to its location information along with other measures.Initially,Media Access Control(MAC)address and Advance Encryption Scheme(AES)along with a secret shared key,i.e.,λ_(i) of 128 bits,have been utilized by Trusted Authority(TA)to generate MaskIDs,which are used instead of the original ID,for every device,i.e.,server and member,and are shared in the offline phase.Secondly,TA shares a list of authentic devices,i.e.,server S_(j) and members C_(i),with every device in the IoT for the onward verification process,which is required to be executed before the initialization of the actual communication process.Additionally,every device should be located such that it lies within the coverage area of a server,and this location information is used in the authentication process.A thorough analytical analysis was carried out to check the susceptibility of the proposed and existing authentication approaches against well-known intruder attacks,i.e.,man-in-the-middle,masquerading,device,and server impersonations,etc.,especially in the IoT domain.Moreover,proposed authentication and existing state-of-the-art approaches have been simulated in the real environment of IoT to verify their performance,particularly in terms of various evaluation metrics,i.e.,processing,communication,and storage overheads.These results have verified the superiority of the proposed scheme against existing state-of-the-art approaches,preferably in terms of communication,storage,and processing costs.展开更多
In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need t...In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need to apply various technologies for automation and control.This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices.One of the major protocols widely used today in industrial electronic devices is Modbus.However,data generated by Modbus devices cannot be understood by IoT applications using different protocols,so it should be applied in a couple with an IoT service layer platform.oneM2M,a global IoT standard,can play the role of interconnecting various protocols,as it provides flexible tools suitable for building an interworking framework for industrial services.Therefore,in this paper,we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards.In the proposed architecture,we introduce the way to model Modbus data as oneM2M resources,rules to map them to each other,procedures required to establish interoperable communication,and optimization methods for this architecture.We analyze our solution and provide an evaluation by implementing it based on a solar power management use case.The results demonstrate that our model is feasible and can be applied to real case scenarios.展开更多
The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which ...The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.展开更多
The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge t...The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge to choose reliable users with which to interact in the IoT.Therefore,trust plays a crucial role in the IoT because trust may avoid some risks.Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning.However,trust propagation is time-consuming,and trust changes with the interaction process in social networks.To track the dynamic changes in trust values,a dynamic trust inference algorithm named Dynamic Double DQN Trust(Dy-DDQNTrust)is proposed to predict the indirect trust values of two users without direct contact with each other.The proposed algorithm simulates the interactions among users by double DQN.Firstly,CurrentNet and TargetNet networks are used to select users for interaction.The users with high trust are chosen to interact in future iterations.Secondly,the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction.Finally,the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Averagebased Similarity(SMCFAvg)aggregation strategy.Experiments are carried out on the FilmTrust and the Epinions datasets.Compared with TidalTrust,MoleTrust,DDQNTrust,DyTrust and Dynamic Weighted Heuristic trust path Search algorithm(DWHS),our dynamic trust inference algorithm has higher prediction accuracy and better scalability.展开更多
The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power g...The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.展开更多
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and sm...Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.展开更多
There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The re...There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.展开更多
Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both cus...Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent ...The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process.展开更多
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar...With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p...With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.展开更多
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli...Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.展开更多
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it...Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.展开更多
The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-rel...The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.展开更多
Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly...Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather event...This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.展开更多
With the continuous intensification of global aging,the issue of elderly care has become an increasingly prominent social problem.The Internet of Things(IoT)technology,as an emerging field,holds broad application pros...With the continuous intensification of global aging,the issue of elderly care has become an increasingly prominent social problem.The Internet of Things(IoT)technology,as an emerging field,holds broad application prospects.This article focuses on the application of IoT technology in group elderly care services and constructs a quality evaluation system for these services based on IoT technology.Through the analysis of practical application cases,the advantages and challenges of IoT technology in group elderly care services have been examined,confirming the feasibility and effectiveness of the evaluation system.展开更多
文摘The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective server module.Although IoTs are cornerstones in different application domains,the device’s authenticity,i.e.,of server(s)and ordinary devices,is the most crucial issue and must be resolved on a priority basis.Therefore,various field-proven methodologies were presented to streamline the verification process of the communicating devices;however,location-aware authentication has not been reported as per our knowledge,which is a crucial metric,especially in scenarios where devices are mobile.This paper presents a lightweight and location-aware device-to-server authentication technique where the device’s membership with the nearest server is subjected to its location information along with other measures.Initially,Media Access Control(MAC)address and Advance Encryption Scheme(AES)along with a secret shared key,i.e.,λ_(i) of 128 bits,have been utilized by Trusted Authority(TA)to generate MaskIDs,which are used instead of the original ID,for every device,i.e.,server and member,and are shared in the offline phase.Secondly,TA shares a list of authentic devices,i.e.,server S_(j) and members C_(i),with every device in the IoT for the onward verification process,which is required to be executed before the initialization of the actual communication process.Additionally,every device should be located such that it lies within the coverage area of a server,and this location information is used in the authentication process.A thorough analytical analysis was carried out to check the susceptibility of the proposed and existing authentication approaches against well-known intruder attacks,i.e.,man-in-the-middle,masquerading,device,and server impersonations,etc.,especially in the IoT domain.Moreover,proposed authentication and existing state-of-the-art approaches have been simulated in the real environment of IoT to verify their performance,particularly in terms of various evaluation metrics,i.e.,processing,communication,and storage overheads.These results have verified the superiority of the proposed scheme against existing state-of-the-art approaches,preferably in terms of communication,storage,and processing costs.
基金the support of the Korea Research Foundation with the funding of the Ministry of Science and Information and Communication Technology(No.2018-0-88457,development of translucent solar cells and Internet of Things technology for Solar Signage).
文摘In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need to apply various technologies for automation and control.This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices.One of the major protocols widely used today in industrial electronic devices is Modbus.However,data generated by Modbus devices cannot be understood by IoT applications using different protocols,so it should be applied in a couple with an IoT service layer platform.oneM2M,a global IoT standard,can play the role of interconnecting various protocols,as it provides flexible tools suitable for building an interworking framework for industrial services.Therefore,in this paper,we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards.In the proposed architecture,we introduce the way to model Modbus data as oneM2M resources,rules to map them to each other,procedures required to establish interoperable communication,and optimization methods for this architecture.We analyze our solution and provide an evaluation by implementing it based on a solar power management use case.The results demonstrate that our model is feasible and can be applied to real case scenarios.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61872289 and 62172266in part by the Henan Key Laboratory of Network Cryptography Technology LNCT2020-A07the Guangxi Key Laboratory of Trusted Software under Grant No.KX202308.
文摘The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.
基金supported by the National Natural Science Foundation of China(62072392)the National Natural Science Foundation of China(61972360)the Major Scientific and Technological Innovation Projects of Shandong Province(2019522Y020131).
文摘The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge to choose reliable users with which to interact in the IoT.Therefore,trust plays a crucial role in the IoT because trust may avoid some risks.Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning.However,trust propagation is time-consuming,and trust changes with the interaction process in social networks.To track the dynamic changes in trust values,a dynamic trust inference algorithm named Dynamic Double DQN Trust(Dy-DDQNTrust)is proposed to predict the indirect trust values of two users without direct contact with each other.The proposed algorithm simulates the interactions among users by double DQN.Firstly,CurrentNet and TargetNet networks are used to select users for interaction.The users with high trust are chosen to interact in future iterations.Secondly,the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction.Finally,the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Averagebased Similarity(SMCFAvg)aggregation strategy.Experiments are carried out on the FilmTrust and the Epinions datasets.Compared with TidalTrust,MoleTrust,DDQNTrust,DyTrust and Dynamic Weighted Heuristic trust path Search algorithm(DWHS),our dynamic trust inference algorithm has higher prediction accuracy and better scalability.
文摘The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.
基金funded in part by the National Natural Science Foundation of China under Grant No.61872038in part by the Fundamental Research Funds for the Central Universities under Grant No.FRF-GF-20-15B.
文摘Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.
基金supported by the National Science Foundation of China(No.U21A20450)Natural Science Foundation of Jiangsu Province Major Project(No.BK20192002)+1 种基金National Natural Science Foundation of China(No.61971440)National Natural Science Foundation of China(No.62271266).
文摘There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.
基金Ministry of Higher Education of Malaysia under theResearch GrantLRGS/1/2019/UKM-UKM/5/2 and Princess Nourah bint Abdulrahman University for financing this researcher through Supporting Project Number(PNURSP2024R235),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
文摘The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(Nos.2020JDJQ0020,2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2020YFSY0010,2022YFQ0045,2022YFS0220,2023YFG0148,2021YFG0131)the YIBIN Science and Technology Support Plan(No.2021CG003)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by the National Natural Science Foundation of China(No.62171051)。
文摘With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.
基金supported by Science and Technology Project of China Southern Power Grid Company Limited under Grant Number 036000KK52200058(GDKJXM20202001).
文摘Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
基金supported by National Natural Science Foundation of China(Grant No.62071377,62101442,62201456)Natural Science Foundation of Shaanxi Province(Grant No.2023-YBGY-036,2022JQ-687)The Graduate Student Innovation Foundation Project of Xi’an University of Posts and Telecommunications under Grant CXJJDL2022003.
文摘The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.
基金supported in part by the National Key R&D Program of China(No.2021YFB3300100)the National Natural Science Foundation of China(No.62171062)。
文摘Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
文摘This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.
基金Phased Achievement of the National College Student Innovation and Entrepreneurship Training Project“Time Bay-A Group Elderly Care Service Platform Based on Internet of Things Technology”(S202013836008X)2021 Chongqing Education Commission Science and Technology Research Program Youth Project(KJQN202105501).
文摘With the continuous intensification of global aging,the issue of elderly care has become an increasingly prominent social problem.The Internet of Things(IoT)technology,as an emerging field,holds broad application prospects.This article focuses on the application of IoT technology in group elderly care services and constructs a quality evaluation system for these services based on IoT technology.Through the analysis of practical application cases,the advantages and challenges of IoT technology in group elderly care services have been examined,confirming the feasibility and effectiveness of the evaluation system.