Localization of sensor nodes in the internet of underwater things(IoUT)is of considerable significance due to its various applications,such as navigation,data tagging,and detection of underwater objects.Therefore,in t...Localization of sensor nodes in the internet of underwater things(IoUT)is of considerable significance due to its various applications,such as navigation,data tagging,and detection of underwater objects.Therefore,in this paper,we propose a hybrid Bayesian multidimensional scaling(BMDS)based localization technique that can work on a fully hybrid IoUT network where the nodes can communicate using either optical,magnetic induction,and acoustic technologies.These communication technologies are already used for communication in the underwater environment;however,lacking localization solutions.Optical and magnetic induction communication achieves higher data rates for short communication.On the contrary,acoustic waves provide a low data rate for long-range underwater communication.The proposed method collectively uses optical,magnetic induction,and acoustic communication-based ranging to estimate the underwater sensor nodes’final locations.Moreover,we also analyze the proposed scheme by deriving the hybrid Cramer-Rao lower bound(H-CRLB).Simulation results provide a complete comparative analysis of the proposed method with the literature.展开更多
For the past few decades,the internet of underwater things(IoUT)otained a lot of attention in mobile aquatic applications such as oceanography,diver network monitoring,unmanned underwater exploration,underwater survei...For the past few decades,the internet of underwater things(IoUT)otained a lot of attention in mobile aquatic applications such as oceanography,diver network monitoring,unmanned underwater exploration,underwater surveillance,location tracking system,etc.Most of the IoUT applications rely on acoustic medium.The current IoUT applications face difficulty in delivering a reliable communication system due to the various technical limitations of IoUT environment such as low data rate,attenuation,limited bandwidth,limited battery,limited memory,connectivity problem,etc.One of the significant applications of IoUT include monitoring underwater diver networks.In order to perform a reliable and energy-efficient communication system in the underwater diver networks,a smart underwater hybrid softwaredefined modem(UHSDM)for the mobile ad-hoc network was developed that is used for selecting the best channel/medium among acoustic,visible light communication(VLC),and infrared(IR)based on the criteria established within the system.However,due to the mobility of underwater divers,the developed UHSDMmeets the challenges such as connectivity errors,frequent link failure,transmission delay caused by re-routing,etc.During emergency,the divers are most at the risk of survival.To deal with diver mobility,connectivity,energy efficiency,and reducing the latency in ADN,a handover mechanism based on pre-built UHSDM is proposed in this paper.This paper focuses on(1)design of UHSDM for ADN(2)propose the channel selection mechanism in UHSDM for selecting the best medium for handover and(3)propose handover protocol inADN.The implementation result shows that the proposed mechanism can be used to find the new route for divers in advance and the latency can be reduced significantly.Additionally,this paper shows the real field experiment of air tests and underwater tests with various distances.This research will contribute much to the profit of researchers in underwater diver networks and underwater networks,for improving the quality of services(QoS)of underwater applications.展开更多
Routing plays a critical role in data transmission for underwater acoustic sensor networks(UWSNs)in the internet of underwater things(IoUT).Traditional routing methods suffer from high end-toend delay,limited bandwidt...Routing plays a critical role in data transmission for underwater acoustic sensor networks(UWSNs)in the internet of underwater things(IoUT).Traditional routing methods suffer from high end-toend delay,limited bandwidth,and high energy consumption.With the development of artificial intelligence and machine learning algorithms,many researchers apply these new methods to improve the quality of routing.In this paper,we propose a Qlearning-based multi-hop cooperative routing protocol(QMCR)for UWSNs.Our protocol can automatically choose nodes with the maximum Q-value as forwarders based on distance information.Moreover,we combine cooperative communications with Q-learning algorithm to reduce network energy consumption and improve communication efficiency.Experimental results show that the running time of the QMCR is less than one-tenth of that of the artificial fish-swarm algorithm(AFSA),while the routing energy consumption is kept at the same level.Due to the extremely fast speed of the algorithm,the QMCR is a promising method of routing design for UWSNs,especially for the case that it suffers from the extreme dynamic underwater acoustic channels in the real ocean environment.展开更多
文摘Localization of sensor nodes in the internet of underwater things(IoUT)is of considerable significance due to its various applications,such as navigation,data tagging,and detection of underwater objects.Therefore,in this paper,we propose a hybrid Bayesian multidimensional scaling(BMDS)based localization technique that can work on a fully hybrid IoUT network where the nodes can communicate using either optical,magnetic induction,and acoustic technologies.These communication technologies are already used for communication in the underwater environment;however,lacking localization solutions.Optical and magnetic induction communication achieves higher data rates for short communication.On the contrary,acoustic waves provide a low data rate for long-range underwater communication.The proposed method collectively uses optical,magnetic induction,and acoustic communication-based ranging to estimate the underwater sensor nodes’final locations.Moreover,we also analyze the proposed scheme by deriving the hybrid Cramer-Rao lower bound(H-CRLB).Simulation results provide a complete comparative analysis of the proposed method with the literature.
基金This research was a part of the project titled“Development of the wide-area underwater mobile communication systems”funded by the Ministry of Oceans and Fisheries,Korea.
文摘For the past few decades,the internet of underwater things(IoUT)otained a lot of attention in mobile aquatic applications such as oceanography,diver network monitoring,unmanned underwater exploration,underwater surveillance,location tracking system,etc.Most of the IoUT applications rely on acoustic medium.The current IoUT applications face difficulty in delivering a reliable communication system due to the various technical limitations of IoUT environment such as low data rate,attenuation,limited bandwidth,limited battery,limited memory,connectivity problem,etc.One of the significant applications of IoUT include monitoring underwater diver networks.In order to perform a reliable and energy-efficient communication system in the underwater diver networks,a smart underwater hybrid softwaredefined modem(UHSDM)for the mobile ad-hoc network was developed that is used for selecting the best channel/medium among acoustic,visible light communication(VLC),and infrared(IR)based on the criteria established within the system.However,due to the mobility of underwater divers,the developed UHSDMmeets the challenges such as connectivity errors,frequent link failure,transmission delay caused by re-routing,etc.During emergency,the divers are most at the risk of survival.To deal with diver mobility,connectivity,energy efficiency,and reducing the latency in ADN,a handover mechanism based on pre-built UHSDM is proposed in this paper.This paper focuses on(1)design of UHSDM for ADN(2)propose the channel selection mechanism in UHSDM for selecting the best medium for handover and(3)propose handover protocol inADN.The implementation result shows that the proposed mechanism can be used to find the new route for divers in advance and the latency can be reduced significantly.Additionally,this paper shows the real field experiment of air tests and underwater tests with various distances.This research will contribute much to the profit of researchers in underwater diver networks and underwater networks,for improving the quality of services(QoS)of underwater applications.
基金the National Key Research and Development Program of China under Grant No.2016YFC1400200in part by the Basic Research Program of Science and Technology of Shenzhen,China under Grant No.JCYJ20190809161805508+2 种基金in part by the Fundamental Research Funds for the Central Universities of China under Grant No.20720200092in part by the Xiamen University’s Honors Program for Undergraduates in Marine Sciences under Grant No.22320152201106in part by the National Natural Science Foundation of China under Grants No.41476026,41976178 and 61801139。
文摘Routing plays a critical role in data transmission for underwater acoustic sensor networks(UWSNs)in the internet of underwater things(IoUT).Traditional routing methods suffer from high end-toend delay,limited bandwidth,and high energy consumption.With the development of artificial intelligence and machine learning algorithms,many researchers apply these new methods to improve the quality of routing.In this paper,we propose a Qlearning-based multi-hop cooperative routing protocol(QMCR)for UWSNs.Our protocol can automatically choose nodes with the maximum Q-value as forwarders based on distance information.Moreover,we combine cooperative communications with Q-learning algorithm to reduce network energy consumption and improve communication efficiency.Experimental results show that the running time of the QMCR is less than one-tenth of that of the artificial fish-swarm algorithm(AFSA),while the routing energy consumption is kept at the same level.Due to the extremely fast speed of the algorithm,the QMCR is a promising method of routing design for UWSNs,especially for the case that it suffers from the extreme dynamic underwater acoustic channels in the real ocean environment.