As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
With the extensive integration of the Internet,social networks and the internet of things,the social internet of things has increasingly become a significant research issue.In the social internet of things application...With the extensive integration of the Internet,social networks and the internet of things,the social internet of things has increasingly become a significant research issue.In the social internet of things application scenario,one of the greatest challenges is how to accurately recommend or match smart objects for users with massive resources.Although a variety of recommendation algorithms have been employed in this field,they ignore the massive text resources in the social internet of things,which can effectively improve the effect of recommendation.In this paper,a smart object recommendation approach named object recommendation based on topic learning and joint features is proposed.The proposed approach extracts and calculates topics and service relevant features of texts related to smart objects and introduces the“thing-thing”relationship information in the internet of things to improve the effect of recommendation.Experiments show that the proposed approach enables higher accuracy compared to the existing recommendation methods.展开更多
There are many problems in Social Internet of Things(IoTs),such as complex topology information,different degree of association between nodes and overlapping communities.The idea of set pair information grain computin...There are many problems in Social Internet of Things(IoTs),such as complex topology information,different degree of association between nodes and overlapping communities.The idea of set pair information grain computing and clustering is introduced to solve the above problems so as to accurately describe the similarity between nodes and fully explore the multi-community structure.A Set Pair Three-Way Overlapping Community Discovery Algorithm for Weighted Social Internet of Things(WSIoT-SPTOCD)is proposed.In the local network structure,which fully considers the topological information between nodes,the set pair connection degree is used to analyze the identity,difference and reverse of neighbor nodes.The similarity degree of different neighbor nodes is defined from network edge weight and node degree,and the similarity measurement method of set pair between nodes based on the local information structure is proposed.According to the number of nodes'neighbors and the connection degree of adjacent edges,the clustering intensity of nodes is defined,and an improved algorithm for initial value selection of k-means is proposed.The nodes are allocated according to the set pair similarity between nodes and different communities.Three-way community structures composed of a positive domain,boundary domain and negative domain are generated iteratively.Next,the overlapping node set is generated according to the calculation results of community node membership.Finally,experiments are carried out on artificial networks and real networks.The results show that WSIoT-SPTOCD performs well in terms of standardized mutual information,overlapping community modularity and F1.展开更多
Social Internet of Vehicles(SIoV)falls under the umbrella of social Internet of Things(IoT),where vehicles are socially connected to other vehicles and roadside units that can reliably share information and services w...Social Internet of Vehicles(SIoV)falls under the umbrella of social Internet of Things(IoT),where vehicles are socially connected to other vehicles and roadside units that can reliably share information and services with other social entities by leveraging the capabilities of 5G technology,which brings new opportunities and challenges,e.g.,collaborative power trading can address the mileage anxiety of electric vehicles.However,it relies on a trusted central party for scheduling,which introduces performance bottlenecks and cannot be set up in a distributed network,in addition,the lack of transparency in state-of-the-art Vehicle-to-Vehicle(V2V)power trading schemes can introduce further trust issues.In this paper,we propose a blockchain-based trustworthy collaborative power trading scheme for 5G-enabled social vehicular networks that uses a distributed market mechanism to introduce trusted power trading and avoids the dependence on a centralized dispatch center.Based on the game theory,we design the pricing and trading matching mechanism for V2V power trading to obtain maximum social welfare.We use blockchain to record power trading data for trusted pricing and use smart contracts for transaction matching.The simulation results verify the effectiveness of the proposed scheme in improving social welfare and reducing the load on the grid.展开更多
The purpose of this paper intends to explore specifically whether heavy usage of the Internet by youths increase or decrease their social interaction opportunities. Issues that will be examined include that of the cha...The purpose of this paper intends to explore specifically whether heavy usage of the Internet by youths increase or decrease their social interaction opportunities. Issues that will be examined include that of the change of face-to-face communication between the youth and their families, friends and social activities. A quantitative research method with questionnaires is adopted to meet the objective of this study.展开更多
AIM To evaluate social media usage of orthopaedic patients to search for solutions to their health problems. METHODS The study data were collected using face-to-face questionnaire with randomly selected 1890 patients ...AIM To evaluate social media usage of orthopaedic patients to search for solutions to their health problems. METHODS The study data were collected using face-to-face questionnaire with randomly selected 1890 patients aged over 18 years who had been admitted to the orthopaedic clinics in different cities and provinces across Turkey. The questionnaire consists of a total of 16 questions pertaining to internet and social media usage and demographics of patients, patients' choice of institution for treatment, patient complaints on admission, online hospital and physician ratings, communication between the patient and the physician and its effects.RESULTS It was found that 34.2%(n = 647) of the participants consulted with an orthopaedist using the internet and 48.7%(n = 315) of them preferred websites that allow users to ask questions to a physician. Of all questionaskers, 48.5%(n = 314) reported having found the answers helpful. Based on the educational level of the participants, there was a highly significant difference between the rates of asking questions to an orthopaedist using the internet(P = 0.001). The rate of questionasking was significantly lower in patients with an elementary education than that in those with secondary, high school and undergraduate education(P = 0.001) The rate of reporting that the answers given was helpful was significantly higher in participants with an undergraduate degree compared to those who were illiterate, those with primary, elementary or high school education(P = 0.001). It was also found that the usage of the internet for health problems was higher among managers-qualified participants than unemployed-housewives, officers, workers-intermediate staff(P < 0.05).CONCLUSION We concluded that patients have been increasingly using the internet and social media to select a specific physician or to seek solution to their health problems in an effective way. Even though the internet and social media offer beneficial effects for physicians or patients, there is still much obscurity regarding their harms and further studies are warranted for necessary arrangements to be made.展开更多
As the Internet of Things (IoT) is emerging as an attractive paradigm, a typical IoT architecture that U2IoT (Unit IoT and Ubiquitous IoT) model has been presented for the future IoT. Based on the U2IoT model, this pa...As the Internet of Things (IoT) is emerging as an attractive paradigm, a typical IoT architecture that U2IoT (Unit IoT and Ubiquitous IoT) model has been presented for the future IoT. Based on the U2IoT model, this paper proposes a cyber-physical-social based security architecture (IPM) to deal with Information, Physical, and Management security perspectives, and presents how the architectural abstractions support U2IoT model. In particular, 1) an information security model is established to describe the mapping relations among U2IoT, security layer, and security requirement, in which social layer and additional intelligence and compatibility properties are infused into IPM;2) physical security referring to the external context and inherent infrastructure are inspired by artificial immune algorithms;3) recommended security strategies are suggested for social management control. The proposed IPM combining the cyber world, physical world and human social provides constructive proposal towards the future IoT security and privacy protection.展开更多
Nowadays,smart wearable devices are used widely in the Social Internet of Things(IoT),which record human physiological data in real time.To protect the data privacy of smart devices,researchers pay more attention to f...Nowadays,smart wearable devices are used widely in the Social Internet of Things(IoT),which record human physiological data in real time.To protect the data privacy of smart devices,researchers pay more attention to federated learning.Although the data leakage problem is somewhat solved,a new challenge has emerged.Asynchronous federated learning shortens the convergence time,while it has time delay and data heterogeneity problems.Both of the two problems harm the accuracy.To overcome these issues,we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time delay and data heterogeneity problems.The scheme improves the Delay Compensated Asynchronous Stochastic Gradient Descent(DC-ASGD)algorithm based on the second-order Taylor expansion as the delay compensation.It adds the FedProx operator to the objective function as the heterogeneity compensation.Besides,the proposed scheme motivates the federated learning process by adjusting the importance of the participants and the central server.We conduct multiple sets of experiments in both conventional and heterogeneous scenarios.The experimental results show that our scheme improves the accuracy by about 5%while keeping the complexity constant.We can find that our scheme converges more smoothly during training and adapts better in heterogeneous environments through numerical experiments.The proposed double-compensation-based federated learning scheme is highly accurate,flexible in terms of participants and smooth the training process.Hence it is deemed suitable for data privacy protection of smart wearable devices.展开更多
The social internet of things(SIoT)is one of the emerging paradigms that was proposed to solve the problems of network service discovery,navigability,and service composition.The SIoT aims to socialize the IoT devices ...The social internet of things(SIoT)is one of the emerging paradigms that was proposed to solve the problems of network service discovery,navigability,and service composition.The SIoT aims to socialize the IoT devices and shape the interconnection between them into social interaction just like human beings.In IoT,an object can offer multiple services and different objects can offer the same services with different parameters and interest factors.The proliferation of offered services led to difficulties during service customization and service filtering.This problem is known as service explosion.The selection of suitable service that fits the requirements of applications and objects is a challenging task.To address these issues,we propose an efficient automated query-based service search model based on the local network navigability concept for the SIoT.In the proposed model,objects can use information from their friends or friends of their friends while searching for the desired services,rather than exploring a global network.We employ a centrality metric that computes the degree of importance for each object in the social IoT that helps in selecting neighboring objects with high centrality scores.The distributed nature of our navigation model results in high scalability and short navigation times.We verified the efficacy of our model on a real-world SIoT-related dataset.The experimental results confirm the validity of our model in terms of scalability,navigability,and the desired objects that provide services are determined quickly via the shortest path,which in return improves the service search process in the SIoT.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
基金supported by National Key Research and Development Program of China (2019YFB2102500)China Postdoctoral Science Foundation (2021M700533)+1 种基金Natural Science Basic Research Program of Shaanxi Province of China (2021JQ-289,2020JQ-855)Social Science Fund of Shaanxi Province of China (2019S044).
文摘With the extensive integration of the Internet,social networks and the internet of things,the social internet of things has increasingly become a significant research issue.In the social internet of things application scenario,one of the greatest challenges is how to accurately recommend or match smart objects for users with massive resources.Although a variety of recommendation algorithms have been employed in this field,they ignore the massive text resources in the social internet of things,which can effectively improve the effect of recommendation.In this paper,a smart object recommendation approach named object recommendation based on topic learning and joint features is proposed.The proposed approach extracts and calculates topics and service relevant features of texts related to smart objects and introduces the“thing-thing”relationship information in the internet of things to improve the effect of recommendation.Experiments show that the proposed approach enables higher accuracy compared to the existing recommendation methods.
文摘There are many problems in Social Internet of Things(IoTs),such as complex topology information,different degree of association between nodes and overlapping communities.The idea of set pair information grain computing and clustering is introduced to solve the above problems so as to accurately describe the similarity between nodes and fully explore the multi-community structure.A Set Pair Three-Way Overlapping Community Discovery Algorithm for Weighted Social Internet of Things(WSIoT-SPTOCD)is proposed.In the local network structure,which fully considers the topological information between nodes,the set pair connection degree is used to analyze the identity,difference and reverse of neighbor nodes.The similarity degree of different neighbor nodes is defined from network edge weight and node degree,and the similarity measurement method of set pair between nodes based on the local information structure is proposed.According to the number of nodes'neighbors and the connection degree of adjacent edges,the clustering intensity of nodes is defined,and an improved algorithm for initial value selection of k-means is proposed.The nodes are allocated according to the set pair similarity between nodes and different communities.Three-way community structures composed of a positive domain,boundary domain and negative domain are generated iteratively.Next,the overlapping node set is generated according to the calculation results of community node membership.Finally,experiments are carried out on artificial networks and real networks.The results show that WSIoT-SPTOCD performs well in terms of standardized mutual information,overlapping community modularity and F1.
基金supported in part by the National Natural Science Foundation of China (No.62002113)the Natural Science Foundation of Hunan Province (No. 2021JJ40122).
文摘Social Internet of Vehicles(SIoV)falls under the umbrella of social Internet of Things(IoT),where vehicles are socially connected to other vehicles and roadside units that can reliably share information and services with other social entities by leveraging the capabilities of 5G technology,which brings new opportunities and challenges,e.g.,collaborative power trading can address the mileage anxiety of electric vehicles.However,it relies on a trusted central party for scheduling,which introduces performance bottlenecks and cannot be set up in a distributed network,in addition,the lack of transparency in state-of-the-art Vehicle-to-Vehicle(V2V)power trading schemes can introduce further trust issues.In this paper,we propose a blockchain-based trustworthy collaborative power trading scheme for 5G-enabled social vehicular networks that uses a distributed market mechanism to introduce trusted power trading and avoids the dependence on a centralized dispatch center.Based on the game theory,we design the pricing and trading matching mechanism for V2V power trading to obtain maximum social welfare.We use blockchain to record power trading data for trusted pricing and use smart contracts for transaction matching.The simulation results verify the effectiveness of the proposed scheme in improving social welfare and reducing the load on the grid.
文摘The purpose of this paper intends to explore specifically whether heavy usage of the Internet by youths increase or decrease their social interaction opportunities. Issues that will be examined include that of the change of face-to-face communication between the youth and their families, friends and social activities. A quantitative research method with questionnaires is adopted to meet the objective of this study.
文摘AIM To evaluate social media usage of orthopaedic patients to search for solutions to their health problems. METHODS The study data were collected using face-to-face questionnaire with randomly selected 1890 patients aged over 18 years who had been admitted to the orthopaedic clinics in different cities and provinces across Turkey. The questionnaire consists of a total of 16 questions pertaining to internet and social media usage and demographics of patients, patients' choice of institution for treatment, patient complaints on admission, online hospital and physician ratings, communication between the patient and the physician and its effects.RESULTS It was found that 34.2%(n = 647) of the participants consulted with an orthopaedist using the internet and 48.7%(n = 315) of them preferred websites that allow users to ask questions to a physician. Of all questionaskers, 48.5%(n = 314) reported having found the answers helpful. Based on the educational level of the participants, there was a highly significant difference between the rates of asking questions to an orthopaedist using the internet(P = 0.001). The rate of questionasking was significantly lower in patients with an elementary education than that in those with secondary, high school and undergraduate education(P = 0.001) The rate of reporting that the answers given was helpful was significantly higher in participants with an undergraduate degree compared to those who were illiterate, those with primary, elementary or high school education(P = 0.001). It was also found that the usage of the internet for health problems was higher among managers-qualified participants than unemployed-housewives, officers, workers-intermediate staff(P < 0.05).CONCLUSION We concluded that patients have been increasingly using the internet and social media to select a specific physician or to seek solution to their health problems in an effective way. Even though the internet and social media offer beneficial effects for physicians or patients, there is still much obscurity regarding their harms and further studies are warranted for necessary arrangements to be made.
文摘As the Internet of Things (IoT) is emerging as an attractive paradigm, a typical IoT architecture that U2IoT (Unit IoT and Ubiquitous IoT) model has been presented for the future IoT. Based on the U2IoT model, this paper proposes a cyber-physical-social based security architecture (IPM) to deal with Information, Physical, and Management security perspectives, and presents how the architectural abstractions support U2IoT model. In particular, 1) an information security model is established to describe the mapping relations among U2IoT, security layer, and security requirement, in which social layer and additional intelligence and compatibility properties are infused into IPM;2) physical security referring to the external context and inherent infrastructure are inspired by artificial immune algorithms;3) recommended security strategies are suggested for social management control. The proposed IPM combining the cyber world, physical world and human social provides constructive proposal towards the future IoT security and privacy protection.
基金supported by the National Natural Science Foundation of China,No.61977006.
文摘Nowadays,smart wearable devices are used widely in the Social Internet of Things(IoT),which record human physiological data in real time.To protect the data privacy of smart devices,researchers pay more attention to federated learning.Although the data leakage problem is somewhat solved,a new challenge has emerged.Asynchronous federated learning shortens the convergence time,while it has time delay and data heterogeneity problems.Both of the two problems harm the accuracy.To overcome these issues,we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time delay and data heterogeneity problems.The scheme improves the Delay Compensated Asynchronous Stochastic Gradient Descent(DC-ASGD)algorithm based on the second-order Taylor expansion as the delay compensation.It adds the FedProx operator to the objective function as the heterogeneity compensation.Besides,the proposed scheme motivates the federated learning process by adjusting the importance of the participants and the central server.We conduct multiple sets of experiments in both conventional and heterogeneous scenarios.The experimental results show that our scheme improves the accuracy by about 5%while keeping the complexity constant.We can find that our scheme converges more smoothly during training and adapts better in heterogeneous environments through numerical experiments.The proposed double-compensation-based federated learning scheme is highly accurate,flexible in terms of participants and smooth the training process.Hence it is deemed suitable for data privacy protection of smart wearable devices.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2020R1A2B5B01002145).
文摘The social internet of things(SIoT)is one of the emerging paradigms that was proposed to solve the problems of network service discovery,navigability,and service composition.The SIoT aims to socialize the IoT devices and shape the interconnection between them into social interaction just like human beings.In IoT,an object can offer multiple services and different objects can offer the same services with different parameters and interest factors.The proliferation of offered services led to difficulties during service customization and service filtering.This problem is known as service explosion.The selection of suitable service that fits the requirements of applications and objects is a challenging task.To address these issues,we propose an efficient automated query-based service search model based on the local network navigability concept for the SIoT.In the proposed model,objects can use information from their friends or friends of their friends while searching for the desired services,rather than exploring a global network.We employ a centrality metric that computes the degree of importance for each object in the social IoT that helps in selecting neighboring objects with high centrality scores.The distributed nature of our navigation model results in high scalability and short navigation times.We verified the efficacy of our model on a real-world SIoT-related dataset.The experimental results confirm the validity of our model in terms of scalability,navigability,and the desired objects that provide services are determined quickly via the shortest path,which in return improves the service search process in the SIoT.