Internet of Things(IoT)and blockchain receive significant interest owing to their applicability in different application areas such as healthcare,finance,transportation,etc.Medical image security and privacy become a ...Internet of Things(IoT)and blockchain receive significant interest owing to their applicability in different application areas such as healthcare,finance,transportation,etc.Medical image security and privacy become a critical part of the healthcare sector where digital images and related patient details are communicated over the public networks.This paper presents a new wind driven optimization algorithm based medical image encryption(WDOA-MIE)technique for blockchain enabled IoT environments.The WDOA-MIE model involves three major processes namely data collection,image encryption,optimal key generation,and data transmission.Initially,the medical images were captured from the patient using IoT devices.Then,the captured images are encrypted using signcryption technique.In addition,for improving the performance of the signcryption technique,the optimal key generation procedure was applied by WDOA algorithm.The goal of the WDOA-MIE algorithm is to derive a fitness function dependent upon peak signal to noise ratio(PSNR).Upon successful encryption of images,the IoT devices transmit to the closest server for storing it in the blockchain securely.The performance of the presented method was analyzed utilizing the benchmark medical image dataset.The security and the performance analysis determine that the presented technique offers better security with maximum PSNR of 60.7036 dB.展开更多
Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the co...Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the color rendering method based on deep learning,such as poor model stability,poor rendering quality,fuzzy boundaries and crossed color boundaries,we propose a novel hinge-cross-entropy generative adversarial network(HCEGAN).The self-attention mechanism was added and improved to focus on the important information of the image.And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models.In this study,we implement the HCEGAN model for image color rendering based on DIV2K and COCO datasets,and evaluate the results using SSIM and PSNR.The experimental results show that the proposed HCEGAN automatically re-renders images,significantly improves the quality of color rendering and greatly improves the stability of prior GAN models.展开更多
Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence o...Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment,generating a massive quantity of healthcare data.In such cases,cognitive computing can be employed that uses many intelligent technologies-machine learning(ML),deep learning(DL),artificial intelligence(AI),natural language processing(NLP)and others-to comprehend data expansively.Furthermore,breast cancer(BC)has been found to be a major cause of mortality among ladies globally.Earlier detection and classification of BC using digital mammograms can decrease the mortality rate.This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm(DLMOMFO)for BC diagnosis and classification in the IoMT environment.The goal of this paper is to integrate deep learning(DL)and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC.The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter(AWMF)-based noise removal and contrast-limited adaptive histogram equalisation(CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms.In addition,a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms.Moreover,a SqueezeNet-based feature extraction and a fuzzy support vector machine(FSVM)classifier were used in the presented technique.To enhance the diagnostic performance of the presented method,the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques.The DL-MOMFO technique was tested on the MIAS database,and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques.展开更多
Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky im...Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation.Therefore,to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network(SANR_CNN)for eliminating noise and improving the MR image reconstruction quality.The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality,and SARN algorithm is used for building a dictionary learning technique for denoising large image datasets.The proposed SANR_CNN model also preserves the details and edges in the image during reconstruction.An experiment was conducted to analyze the performance of SANR_CNN in a few existing models in regard with peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and mean squared error(MSE).The proposed SANR_CNN model achieved higher PSNR,SSIM,and MSE efficiency than the other noise removal techniques.The proposed architecture also provides transmission of these denoised medical images through secured IoT architecture.展开更多
In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medica...In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medical tests.This datum is sensitive,and hence security is a must in transforming the sensational contents.In this paper,an Evolutionary Algorithm,namely the Memetic Algorithm is used for encrypting the text messages.The encrypted information is then inserted into the medical images using Discrete Wavelet Transform 1 level and 2 levels.The reverse method of the Memetic Algorithm is implemented when extracting a hidden message from the encoded letter.To show its precision,equivalent to five RGB images and five Grayscale images are used to test the proposed algorithm.The results of the proposed algorithm were analyzed using statistical methods,and the proposed algorithm showed the importance of data transfer in healthcare systems in a stable environment.In the future,to embed the privacy-preserving of medical data,it can be extended with blockchain technology.展开更多
文摘Internet of Things(IoT)and blockchain receive significant interest owing to their applicability in different application areas such as healthcare,finance,transportation,etc.Medical image security and privacy become a critical part of the healthcare sector where digital images and related patient details are communicated over the public networks.This paper presents a new wind driven optimization algorithm based medical image encryption(WDOA-MIE)technique for blockchain enabled IoT environments.The WDOA-MIE model involves three major processes namely data collection,image encryption,optimal key generation,and data transmission.Initially,the medical images were captured from the patient using IoT devices.Then,the captured images are encrypted using signcryption technique.In addition,for improving the performance of the signcryption technique,the optimal key generation procedure was applied by WDOA algorithm.The goal of the WDOA-MIE algorithm is to derive a fitness function dependent upon peak signal to noise ratio(PSNR).Upon successful encryption of images,the IoT devices transmit to the closest server for storing it in the blockchain securely.The performance of the presented method was analyzed utilizing the benchmark medical image dataset.The security and the performance analysis determine that the presented technique offers better security with maximum PSNR of 60.7036 dB.
基金Foundation of China(No.61902311)funding for this studysupported in part by the Natural Science Foundation of Shaanxi Province in China under Grants 2022JM-508,2022JM-317 and 2019JM-162.
文摘Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the color rendering method based on deep learning,such as poor model stability,poor rendering quality,fuzzy boundaries and crossed color boundaries,we propose a novel hinge-cross-entropy generative adversarial network(HCEGAN).The self-attention mechanism was added and improved to focus on the important information of the image.And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models.In this study,we implement the HCEGAN model for image color rendering based on DIV2K and COCO datasets,and evaluate the results using SSIM and PSNR.The experimental results show that the proposed HCEGAN automatically re-renders images,significantly improves the quality of color rendering and greatly improves the stability of prior GAN models.
基金We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/328),Taif University,Taif,Saudi Arabia.
文摘Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment,generating a massive quantity of healthcare data.In such cases,cognitive computing can be employed that uses many intelligent technologies-machine learning(ML),deep learning(DL),artificial intelligence(AI),natural language processing(NLP)and others-to comprehend data expansively.Furthermore,breast cancer(BC)has been found to be a major cause of mortality among ladies globally.Earlier detection and classification of BC using digital mammograms can decrease the mortality rate.This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm(DLMOMFO)for BC diagnosis and classification in the IoMT environment.The goal of this paper is to integrate deep learning(DL)and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC.The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter(AWMF)-based noise removal and contrast-limited adaptive histogram equalisation(CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms.In addition,a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms.Moreover,a SqueezeNet-based feature extraction and a fuzzy support vector machine(FSVM)classifier were used in the presented technique.To enhance the diagnostic performance of the presented method,the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques.The DL-MOMFO technique was tested on the MIAS database,and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques.
基金This research was financially supported in part by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program.(Project No.P0016038)and in part by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2021-2016-0-00312)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation).
文摘Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation.Therefore,to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network(SANR_CNN)for eliminating noise and improving the MR image reconstruction quality.The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality,and SARN algorithm is used for building a dictionary learning technique for denoising large image datasets.The proposed SANR_CNN model also preserves the details and edges in the image during reconstruction.An experiment was conducted to analyze the performance of SANR_CNN in a few existing models in regard with peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and mean squared error(MSE).The proposed SANR_CNN model achieved higher PSNR,SSIM,and MSE efficiency than the other noise removal techniques.The proposed architecture also provides transmission of these denoised medical images through secured IoT architecture.
文摘In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medical tests.This datum is sensitive,and hence security is a must in transforming the sensational contents.In this paper,an Evolutionary Algorithm,namely the Memetic Algorithm is used for encrypting the text messages.The encrypted information is then inserted into the medical images using Discrete Wavelet Transform 1 level and 2 levels.The reverse method of the Memetic Algorithm is implemented when extracting a hidden message from the encoded letter.To show its precision,equivalent to five RGB images and five Grayscale images are used to test the proposed algorithm.The results of the proposed algorithm were analyzed using statistical methods,and the proposed algorithm showed the importance of data transfer in healthcare systems in a stable environment.In the future,to embed the privacy-preserving of medical data,it can be extended with blockchain technology.