This paper uses a nonperturbative scattering theory to study photoelectron angular distributions of homonuclear diatomic molecules irradiated by circularly polarized laser fields. This study shows that the nonisotropi...This paper uses a nonperturbative scattering theory to study photoelectron angular distributions of homonuclear diatomic molecules irradiated by circularly polarized laser fields. This study shows that the nonisotropic feature of photoelectron angular distributions is not due to the polarization of the laser field but the internuclear vector of the molecules. It suggests a method to measure the molecular orientation and the internuclear distance of molecules through the measurement of photoelectron angular distributions.展开更多
The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable ...The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.展开更多
Two-photon laser-induced fluorescence spectrum (TP-LIF) of NO is obtained with a Nd:YAG pumped optical parametric generator and amplifier as radiation source. Spectral intensity distribution shows that the electronic ...Two-photon laser-induced fluorescence spectrum (TP-LIF) of NO is obtained with a Nd:YAG pumped optical parametric generator and amplifier as radiation source. Spectral intensity distribution shows that the electronic transition moment for NO (A2 X2II) transition varies significantly with inter-nuclear distance. The variation relationship of the electronic transition moment versus inter-nuclear distance is deduced with polyminal fit procedure. The spontaneous radiative coefficients for NO (A2X2II) transition from v' = 0,1 are obtained by combing this transition moment variation with the measurements of spontaneous radiative lifetime.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10774153)the National Basic Research Program of China (Grant No. 2006CD806000)the Shanghai "Phosphor" Science Foundation, China (Grant No. 08QH1402400)
文摘This paper uses a nonperturbative scattering theory to study photoelectron angular distributions of homonuclear diatomic molecules irradiated by circularly polarized laser fields. This study shows that the nonisotropic feature of photoelectron angular distributions is not due to the polarization of the laser field but the internuclear vector of the molecules. It suggests a method to measure the molecular orientation and the internuclear distance of molecules through the measurement of photoelectron angular distributions.
基金the National Key Research and Development Program of China (Grant No.2019YFA0307700)the National Natural Science Foundation of China (Grant Nos.12074145 and 11975012)+1 种基金Jilin Provincial Research Foundation for Basic Research,China (Grant No.20220101003JC)Jilin Provincial Education Department (Grant No.JJKH20230284KJ)。
文摘The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.
基金This work was supported by the Natural Science Foun-dation of Hebei Province,China (Grant No,102090)
文摘Two-photon laser-induced fluorescence spectrum (TP-LIF) of NO is obtained with a Nd:YAG pumped optical parametric generator and amplifier as radiation source. Spectral intensity distribution shows that the electronic transition moment for NO (A2 X2II) transition varies significantly with inter-nuclear distance. The variation relationship of the electronic transition moment versus inter-nuclear distance is deduced with polyminal fit procedure. The spontaneous radiative coefficients for NO (A2X2II) transition from v' = 0,1 are obtained by combing this transition moment variation with the measurements of spontaneous radiative lifetime.