This paper presents an efficient way to implement an interpolation filter in a 20bit ∑-△ DAC with an oversampling ratio of 128. A multistage structure is used to reduce the complexity of filter coefficients and the ...This paper presents an efficient way to implement an interpolation filter in a 20bit ∑-△ DAC with an oversampling ratio of 128. A multistage structure is used to reduce the complexity of filter coefficients and the fi- nite word length effect. A novel method based on mixed-radix number representation is proposed to realize a poly- phase multiplier-free half-band subfilter with a high resolution. This approach reduces the complexity of the con- trol system and saves chip area dramatically. The IC is realized in a standard 0.13μm CMOS process and the inter- polation filter occupies less than 0.63mm^2 . This realization has desirable properties of regularity with simple hard- ware devices which are suitable for VLSI and can be applied to many other high resolution data converters.展开更多
Motion compensation with adaptive interpolation filters (AIF) was developed to compensate for temporary varieties in the aliasing of video signals and improve the coding efficiency. The AIF achieves better RD perfor...Motion compensation with adaptive interpolation filters (AIF) was developed to compensate for temporary varieties in the aliasing of video signals and improve the coding efficiency. The AIF achieves better RD performance than common static interpolation filtering by exploiting the statistics in the reference frames' local auto-correlation and the local cross-correlation between the current encoding frame and the reference frames. This paper presents an interpolation filter buffering structure that derives the current en- coding frame's interpolation filters from the filters of previous frames. The number of encoding bits for the filter coefficients is reduced by encoding only the differences between the current filter coefficients and the corresponding buffered filter coefficients. Experimental results show that in comparison with the AIF in the current "key technical area" (KTA) reference software, this interpolation filter buffering structure further improves all the test sequences (with up to 2.87% bit rate saving) with negligible computational increase.展开更多
In this paper the design and implementation of Multi-Dimensional (MD) filter, particularly 3-Dimensional (3D) filter, are presented. Digital (discrete domain) filters applied to image and video signal processing using...In this paper the design and implementation of Multi-Dimensional (MD) filter, particularly 3-Dimensional (3D) filter, are presented. Digital (discrete domain) filters applied to image and video signal processing using the novel 3D multirate algorithms for efficient implementation of moving object extraction are engineered with an example. The multirate (decimation and/or interpolation) signal processing algorithms can achieve significant savings in computation and memory usage. The proposed algorithm uses the mapping relations of z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase de- composition counterparts. The mapping properties can be readily used to efficiently analyze and synthesize MD multirate filters.展开更多
In this letter, an adaptive interpolation algorithm based on edge detection is proposed. With this algorithm, all the missing green values can be reconstructed in Bayer pattern image by using edge detection interpolat...In this letter, an adaptive interpolation algorithm based on edge detection is proposed. With this algorithm, all the missing green values can be reconstructed in Bayer pattern image by using edge detection interpolation method. Reconstructed images composed of green pixels are classified according to the high frequency components in image, and the threshold T needed for all kinds of green images in the edge detection is determined through experiments. The edge detection is carried out based on the one Dimensional (1D) gradient operator. If the gradient value is greater than T, this pixel is located on the edge; otherwise the pixel is in the smooth area of the image. Finally, the simple bilinear interpolation is used for the smooth area while the Laplacian interpolation with the second-order correction term is adopted to reconstruct the other red/blue values on the edge. This algorithm resolves effectively the conflicts between reconstructing high quality color image and reducing computational complexity, and thus largely enhances the processing speed for the reconstructed color image.展开更多
An efficient adaptive approximation demosaicking algorithm based on the sampled edge pattern was presented for mosaic images from Bayer color filter array. The proposed algorithm determined edge patterns by four neare...An efficient adaptive approximation demosaicking algorithm based on the sampled edge pattern was presented for mosaic images from Bayer color filter array. The proposed algorithm determined edge patterns by four nearest green values surrounding the green interpolation location. Then according to the edge patterns, different adaptive interpolation steps were applied. Simulations on 12 Kodak photos and 15 IMAX high-quality images showed that the proposed method outperformed the other four demosaicking methods (bilinear, effective color interpolation, Lu's method and Chen's method) for average color peak signal to noise ratios and maintained a relatively low complexity owing to constant color-difference interpolation step and a reasonable terminating condition of iteration.展开更多
A novel anti-aliasing wavelet packet transform method for harmonic detection is proposed. Aiming at the low measurement precision and poor robustness which exists in the former traditional wavelet methods for lack of ...A novel anti-aliasing wavelet packet transform method for harmonic detection is proposed. Aiming at the low measurement precision and poor robustness which exists in the former traditional wavelet methods for lack of the aliasing_reduction scheme, an optimal interpolation wavelet packet filter is designed according to new optimal criteria. First, the limitation of anti-aliasing on the traditional wavelet filter bank is analyzed. Second, the designed optimal interpolation filters axe denoted, and then the solution algorithm is given. This devised wavelet packet filter can seek a reasonable balance between signal preservation and aliasing reduction; it overcomes the inherent bug of traditional wavelet transforms, which rooted from just only concerning total aliasing cancellation but not aliasing-reduction in decomposition. Simulation and several comparative results indicate that the proposed method can effectively eliminate aliasing and precisely extract harmonic information.展开更多
Edge detection is a fundamental issue in image analysis. This paper proposes multirate algorithms for efficient implementation of edge detector, and a design example is illustrated.The multirate (decimation and/or int...Edge detection is a fundamental issue in image analysis. This paper proposes multirate algorithms for efficient implementation of edge detector, and a design example is illustrated.The multirate (decimation and/or interpolation) signal processing algorithms can achieve considerable savings in computation and storage. The proposed algorithms result in mapping relations of their z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase decomposition counterparts.The mapping properties can be readily utilized to efficiently analyze and synthesize multirate edge detection filters. The Very high-speed Hardware Description Language (VHDL) simulation results verify efficiency of the algorithms for real-time Field Programmable Gate-Array (FPGA)implementation.展开更多
The dyadic Green’s function in multi-layer structures for Maxwell equations is a key component for the integral equation method,but time consuming to calculate.A novel algorithm,the Fast Interpolation and Filtering A...The dyadic Green’s function in multi-layer structures for Maxwell equations is a key component for the integral equation method,but time consuming to calculate.A novel algorithm,the Fast Interpolation and Filtering Algorithm(FIFA),for the calculation of the dyadic Green’s function in multi-layer structures is proposed in this paper.We discuss in specific details,ready for use in practical calculations of scattering in layer media,how to apply FIFA to calculate various components of the dyadic Green’s function.The algorithm is based on two techniques:interpolation of Green’s function both in the spectral domain and spatial domain,and low pass filter window based acceleration.Compared to the popular Complex Image Method(CIM),FIFA provides the same speed and overcomes several difficulties associated with CIM while being more general and robust.Specifically,there are no limitations on the frequency range,the number of layers in the structure and the type of Green’s functions to be calculated,and moreover,no need to extract surface wave poles from the spectral form of the Green’s function.Numerical results are given to demonstrate the efficiency and robustness of the proposed method.展开更多
The effects of sea surface temperature(SST) data assimilation in two regional ocean modeling systems were examined for the Yellow Sea(YS). The SST data from the Operational Sea Surface Temperature and Sea Ice Anal...The effects of sea surface temperature(SST) data assimilation in two regional ocean modeling systems were examined for the Yellow Sea(YS). The SST data from the Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA) were assimilated. The National Marine Environmental Forecasting Center(NMEFC) modeling system uses the ensemble optimal interpolation method for ocean data assimilation and the Kunsan National University(KNU) modeling system uses the ensemble Kalman filter. Without data assimilation, the NMEFC modeling system was better in simulating the subsurface temperature while the KNU modeling system was better in simulating SST. The disparity between both modeling systems might be related to differences in calculating the surface heat flux, horizontal grid spacing, and atmospheric forcing data. The data assimilation reduced the root mean square error(RMSE) of the SST from 1.78°C(1.46°C) to 1.30°C(1.21°C) for the NMEFC(KNU) modeling system when the simulated temperature was compared to Optimum Interpolation Sea Surface Temperature(OISST) SST dataset. A comparison with the buoy SST data indicated a 41%(31%) decrease in the SST error for the NMEFC(KNU) modeling system by the data assimilation. In both data assimilative systems, the RMSE of the temperature was less than 1.5°C in the upper 20 m and approximately 3.1°C in the lower layer in October. In contrast, it was less than 1.0°C throughout the water column in February. This study suggests that assimilations of the observed temperature profiles are necessary in order to correct the lower layer temperature during the stratified season and an ocean modeling system with small grid spacing and optimal data assimilation method is preferable to ensure accurate predictions of the coastal ocean in the YS.展开更多
This paper describes a low-power low-cost 24-bit ∑-△ digital-to-analog converter (DAC) for portable digital-audio applications. The interpolation filter uses a no-multiplier scheme to implement the arithmetic unit...This paper describes a low-power low-cost 24-bit ∑-△ digital-to-analog converter (DAC) for portable digital-audio applications. The interpolation filter uses a no-multiplier scheme to implement the arithmetic units and reading-writing common storage scheme for the delay-line to significantly reduce the die area. A 15-level quantizer, third-order, single-stage ∑-△ modulator is employed to reduce the passband quantization noise, relax the out-of-band filtering requirements, and enhance immunity to clock jitter. A data weighted averaging algorithm is used to mitigate the nonlinearity caused by capacitor mismatch. A direct charge transfer switched-capacitor low-pass filter (DCT-SC LPF) is used to reconstruct the analog signal to reduce the kTIC noise and capacitor mismatch effect with a small increase of the power dissipation. The chip was fabricated in the SMIC 0.13 μm 1P5M CMOS process. The cell area of the digital part is 0.056 mm^2 and the total area of the analog part is 0.34 mm^2. The supply voltage is 1.2 V for the digital circuit and 3.3 V for the analog circuit. The power consumption of the analog part is 3.5 mW. The audio DAC achieves a 100 dB dynamic range and an 84 dB peak signal-to-noise-plus-distortion ratio over a 20 kHz passband. The results show that these performances are good enough for high quality portable audio applications.展开更多
One of the main aspects in computed tomography (CT) development is to make CT rapidly scan a large longitudinal volume with high z-axis resolution. The combination of helical scanning with multi-slice CT is a promisin...One of the main aspects in computed tomography (CT) development is to make CT rapidly scan a large longitudinal volume with high z-axis resolution. The combination of helical scanning with multi-slice CT is a promising approach. Image reconstruction in multi-slice CT becomes, therefore, the major challenge. Known algorithms need to derive the complementary data or work only for certain range of pitches. A reconstruction algorithm was presented that works with the direct data as well as arbitrary pitches. Filter interpolation based on the proposed method was implemented easy. The results of computer simulations under kinds of conditions for four-slice CT were presented. The proposed method can obtain higher efficiency than the conventional method.展开更多
文摘This paper presents an efficient way to implement an interpolation filter in a 20bit ∑-△ DAC with an oversampling ratio of 128. A multistage structure is used to reduce the complexity of filter coefficients and the fi- nite word length effect. A novel method based on mixed-radix number representation is proposed to realize a poly- phase multiplier-free half-band subfilter with a high resolution. This approach reduces the complexity of the con- trol system and saves chip area dramatically. The IC is realized in a standard 0.13μm CMOS process and the inter- polation filter occupies less than 0.63mm^2 . This realization has desirable properties of regularity with simple hard- ware devices which are suitable for VLSI and can be applied to many other high resolution data converters.
基金Supported by the National Natural Science Foundation of China(No. 60872056)the Scientific and Technological Innovation Nurture Funds Major Projects of MOE, P.R.C. (No. 707005)the Distinguished Young Scholars of the National Natural Science Foundation of China (No. 60525111)
文摘Motion compensation with adaptive interpolation filters (AIF) was developed to compensate for temporary varieties in the aliasing of video signals and improve the coding efficiency. The AIF achieves better RD performance than common static interpolation filtering by exploiting the statistics in the reference frames' local auto-correlation and the local cross-correlation between the current encoding frame and the reference frames. This paper presents an interpolation filter buffering structure that derives the current en- coding frame's interpolation filters from the filters of previous frames. The number of encoding bits for the filter coefficients is reduced by encoding only the differences between the current filter coefficients and the corresponding buffered filter coefficients. Experimental results show that in comparison with the AIF in the current "key technical area" (KTA) reference software, this interpolation filter buffering structure further improves all the test sequences (with up to 2.87% bit rate saving) with negligible computational increase.
基金Sponsored by SRF for ROCS, SEM. (No.2006699)Ningbo Natural Science Foundation (No.2006A610016).
文摘In this paper the design and implementation of Multi-Dimensional (MD) filter, particularly 3-Dimensional (3D) filter, are presented. Digital (discrete domain) filters applied to image and video signal processing using the novel 3D multirate algorithms for efficient implementation of moving object extraction are engineered with an example. The multirate (decimation and/or interpolation) signal processing algorithms can achieve significant savings in computation and memory usage. The proposed algorithm uses the mapping relations of z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase de- composition counterparts. The mapping properties can be readily used to efficiently analyze and synthesize MD multirate filters.
基金Supported by the Natural Science Foundation of Shanxi Province (No.20051019).
文摘In this letter, an adaptive interpolation algorithm based on edge detection is proposed. With this algorithm, all the missing green values can be reconstructed in Bayer pattern image by using edge detection interpolation method. Reconstructed images composed of green pixels are classified according to the high frequency components in image, and the threshold T needed for all kinds of green images in the edge detection is determined through experiments. The edge detection is carried out based on the one Dimensional (1D) gradient operator. If the gradient value is greater than T, this pixel is located on the edge; otherwise the pixel is in the smooth area of the image. Finally, the simple bilinear interpolation is used for the smooth area while the Laplacian interpolation with the second-order correction term is adopted to reconstruct the other red/blue values on the edge. This algorithm resolves effectively the conflicts between reconstructing high quality color image and reducing computational complexity, and thus largely enhances the processing speed for the reconstructed color image.
基金Supported by National Natural Science Foundation of China(No.60975001 and No.61271412)
文摘An efficient adaptive approximation demosaicking algorithm based on the sampled edge pattern was presented for mosaic images from Bayer color filter array. The proposed algorithm determined edge patterns by four nearest green values surrounding the green interpolation location. Then according to the edge patterns, different adaptive interpolation steps were applied. Simulations on 12 Kodak photos and 15 IMAX high-quality images showed that the proposed method outperformed the other four demosaicking methods (bilinear, effective color interpolation, Lu's method and Chen's method) for average color peak signal to noise ratios and maintained a relatively low complexity owing to constant color-difference interpolation step and a reasonable terminating condition of iteration.
文摘A novel anti-aliasing wavelet packet transform method for harmonic detection is proposed. Aiming at the low measurement precision and poor robustness which exists in the former traditional wavelet methods for lack of the aliasing_reduction scheme, an optimal interpolation wavelet packet filter is designed according to new optimal criteria. First, the limitation of anti-aliasing on the traditional wavelet filter bank is analyzed. Second, the designed optimal interpolation filters axe denoted, and then the solution algorithm is given. This devised wavelet packet filter can seek a reasonable balance between signal preservation and aliasing reduction; it overcomes the inherent bug of traditional wavelet transforms, which rooted from just only concerning total aliasing cancellation but not aliasing-reduction in decomposition. Simulation and several comparative results indicate that the proposed method can effectively eliminate aliasing and precisely extract harmonic information.
文摘Edge detection is a fundamental issue in image analysis. This paper proposes multirate algorithms for efficient implementation of edge detector, and a design example is illustrated.The multirate (decimation and/or interpolation) signal processing algorithms can achieve considerable savings in computation and storage. The proposed algorithms result in mapping relations of their z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase decomposition counterparts.The mapping properties can be readily utilized to efficiently analyze and synthesize multirate edge detection filters. The Very high-speed Hardware Description Language (VHDL) simulation results verify efficiency of the algorithms for real-time Field Programmable Gate-Array (FPGA)implementation.
文摘The dyadic Green’s function in multi-layer structures for Maxwell equations is a key component for the integral equation method,but time consuming to calculate.A novel algorithm,the Fast Interpolation and Filtering Algorithm(FIFA),for the calculation of the dyadic Green’s function in multi-layer structures is proposed in this paper.We discuss in specific details,ready for use in practical calculations of scattering in layer media,how to apply FIFA to calculate various components of the dyadic Green’s function.The algorithm is based on two techniques:interpolation of Green’s function both in the spectral domain and spatial domain,and low pass filter window based acceleration.Compared to the popular Complex Image Method(CIM),FIFA provides the same speed and overcomes several difficulties associated with CIM while being more general and robust.Specifically,there are no limitations on the frequency range,the number of layers in the structure and the type of Green’s functions to be calculated,and moreover,no need to extract surface wave poles from the spectral form of the Green’s function.Numerical results are given to demonstrate the efficiency and robustness of the proposed method.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1401800 and 2016YFC1401605the Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)+5 种基金the project of Development of Korea Operational Oceanographic System(KOOS),Phase 2 funded by the Ministry of Oceans and Fisheriesthe National Natural Science Foundation of China under contract Nos 41076011,41206023 and 41222038the National Basic Research Program(973 Program)of China under contract No.2011CB403606the Public Science and Technology Research Funds Project of Ocean under contract No.201205018the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA1102010403Producing map of ocean currents for the neighboring seas of Korea funded by the Ministry of Oceans and Fisheries under contract No.2033-307-210-13
文摘The effects of sea surface temperature(SST) data assimilation in two regional ocean modeling systems were examined for the Yellow Sea(YS). The SST data from the Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA) were assimilated. The National Marine Environmental Forecasting Center(NMEFC) modeling system uses the ensemble optimal interpolation method for ocean data assimilation and the Kunsan National University(KNU) modeling system uses the ensemble Kalman filter. Without data assimilation, the NMEFC modeling system was better in simulating the subsurface temperature while the KNU modeling system was better in simulating SST. The disparity between both modeling systems might be related to differences in calculating the surface heat flux, horizontal grid spacing, and atmospheric forcing data. The data assimilation reduced the root mean square error(RMSE) of the SST from 1.78°C(1.46°C) to 1.30°C(1.21°C) for the NMEFC(KNU) modeling system when the simulated temperature was compared to Optimum Interpolation Sea Surface Temperature(OISST) SST dataset. A comparison with the buoy SST data indicated a 41%(31%) decrease in the SST error for the NMEFC(KNU) modeling system by the data assimilation. In both data assimilative systems, the RMSE of the temperature was less than 1.5°C in the upper 20 m and approximately 3.1°C in the lower layer in October. In contrast, it was less than 1.0°C throughout the water column in February. This study suggests that assimilations of the observed temperature profiles are necessary in order to correct the lower layer temperature during the stratified season and an ocean modeling system with small grid spacing and optimal data assimilation method is preferable to ensure accurate predictions of the coastal ocean in the YS.
文摘This paper describes a low-power low-cost 24-bit ∑-△ digital-to-analog converter (DAC) for portable digital-audio applications. The interpolation filter uses a no-multiplier scheme to implement the arithmetic units and reading-writing common storage scheme for the delay-line to significantly reduce the die area. A 15-level quantizer, third-order, single-stage ∑-△ modulator is employed to reduce the passband quantization noise, relax the out-of-band filtering requirements, and enhance immunity to clock jitter. A data weighted averaging algorithm is used to mitigate the nonlinearity caused by capacitor mismatch. A direct charge transfer switched-capacitor low-pass filter (DCT-SC LPF) is used to reconstruct the analog signal to reduce the kTIC noise and capacitor mismatch effect with a small increase of the power dissipation. The chip was fabricated in the SMIC 0.13 μm 1P5M CMOS process. The cell area of the digital part is 0.056 mm^2 and the total area of the analog part is 0.34 mm^2. The supply voltage is 1.2 V for the digital circuit and 3.3 V for the analog circuit. The power consumption of the analog part is 3.5 mW. The audio DAC achieves a 100 dB dynamic range and an 84 dB peak signal-to-noise-plus-distortion ratio over a 20 kHz passband. The results show that these performances are good enough for high quality portable audio applications.
文摘One of the main aspects in computed tomography (CT) development is to make CT rapidly scan a large longitudinal volume with high z-axis resolution. The combination of helical scanning with multi-slice CT is a promising approach. Image reconstruction in multi-slice CT becomes, therefore, the major challenge. Known algorithms need to derive the complementary data or work only for certain range of pitches. A reconstruction algorithm was presented that works with the direct data as well as arbitrary pitches. Filter interpolation based on the proposed method was implemented easy. The results of computer simulations under kinds of conditions for four-slice CT were presented. The proposed method can obtain higher efficiency than the conventional method.