文献[1]应用Lwner与Hankel矩阵解法得出一般有理插值问题的McMillan次数小于插值点个数N(含重数)的所有真有理解及其参数表示.沿用[1]中记号与术语,我们在本文中继续考虑这个插值问题并得到包括真与非真有理解在内的所有解及其参数表...文献[1]应用Lwner与Hankel矩阵解法得出一般有理插值问题的McMillan次数小于插值点个数N(含重数)的所有真有理解及其参数表示.沿用[1]中记号与术语,我们在本文中继续考虑这个插值问题并得到包括真与非真有理解在内的所有解及其参数表示(详情见[2]),因而完全解决该问题。给出一般有理插值问题{(x_i,Y_(ik)),i=1,…,t;k=0,…τ_i-1},其Hankel向量记为b∈Q^(N-J),N=sum from i=1 to tτ_i.设n_1,n_2为b的特征度;(p(λ),q(λ))为典型特征多项式对.令α(λ)=p(λ)ω(λ)展开更多
文摘文献[1]应用Lwner与Hankel矩阵解法得出一般有理插值问题的McMillan次数小于插值点个数N(含重数)的所有真有理解及其参数表示.沿用[1]中记号与术语,我们在本文中继续考虑这个插值问题并得到包括真与非真有理解在内的所有解及其参数表示(详情见[2]),因而完全解决该问题。给出一般有理插值问题{(x_i,Y_(ik)),i=1,…,t;k=0,…τ_i-1},其Hankel向量记为b∈Q^(N-J),N=sum from i=1 to tτ_i.设n_1,n_2为b的特征度;(p(λ),q(λ))为典型特征多项式对.令α(λ)=p(λ)ω(λ)