期刊文献+
共找到30,783篇文章
< 1 2 250 >
每页显示 20 50 100
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:1
1
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 Unmanned aerial vehicle(UAV) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
Intelligent geochemical interpretation of mass chromatograms:Based on convolution neural network
2
作者 Kai-Ming Su Jun-Gang Lu +2 位作者 Jian Yu Zi-Xing Lu Shi-Jia Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期752-764,共13页
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide... Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies. 展开更多
关键词 Organic geochemistry BIOMARKER Mass chromatographic analysis Automated interpretation Convolution neural network Machine learning
下载PDF
Hyperspectral Image Based Interpretable Feature Clustering Algorithm
3
作者 Yaming Kang PeishunYe +1 位作者 Yuxiu Bai Shi Qiu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2151-2168,共18页
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy... Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81. 展开更多
关键词 HYPERSPECTRAL fuzzy clustering tissue P system band selection interpretable
下载PDF
THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector
4
作者 Monerah Alawadh Ahmed Barnawi 《Computers, Materials & Continua》 SCIE EI 2024年第6期4995-5015,共21页
Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only f... Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes. 展开更多
关键词 Association rule learning POST-PROCESSING PREDICTIVE machine learning rule interpretability
下载PDF
Identification and distribution of 13003 landslides in the northwest margin of Qinghai-Tibet Plateau based on human-computer interaction remote sensing interpretation
5
作者 Wei Wang Yuan-dong Huang +8 位作者 Chong Xu Xiao-yi Shao Lei Li Li-ye Feng Hui-ran Gao Yu-long Cui Shuai Wu Zhi-qiang Yang Kai Ma 《China Geology》 CAS CSCD 2024年第2期171-187,共17页
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai... The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area. 展开更多
关键词 LANDSLIDES Human-computer interaction interpretation Landslide database Spatial distribution Earthquake RAINFALL Human engineering activity Qinghai-Tibet Plateau Geological hazards survey engineering
下载PDF
Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems
6
作者 Xia Li Zhanyou Ma +3 位作者 Zhibao Mian Ziyuan Liu Ruiqi Huang Nana He 《Computers, Materials & Continua》 SCIE EI 2024年第3期4129-4152,共24页
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s... Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system. 展开更多
关键词 Model checking multi-agent systems fuzzy epistemic interpreted systems fuzzy computation tree logic transformation algorithm
下载PDF
Preliminary report of coseismic surface rupture(part)of Türkiye's M_(W)7.8 earthquake by remote sensing interpretation
7
作者 Yali Guo Haofeng Li +3 位作者 Peng Liang Renwei Xiong Chaozhong Hu Yueren Xu 《Earthquake Research Advances》 CSCD 2024年第1期4-13,共10页
Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface r... Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories. 展开更多
关键词 2023 Türkiye M_(w)7.8 earthquake Coseismic surface rupture East anatolian fault zone Eurasian seismic zone Remote sensing interpretation
下载PDF
Simultaneous Interpreting Output Assessment of Earnings Conference Call: Case Analysis of Tencent 2022 Q3 Result Announcement
8
作者 Hongfei Li Jinyu Liu 《Open Journal of Applied Sciences》 2024年第1期223-242,共20页
Quality in simultaneous interpreting is a frequently discussed concept. In the enterprise setting, earnings conference call remains a rarely explored field. This thesis offers a descriptive study on assessing interpre... Quality in simultaneous interpreting is a frequently discussed concept. In the enterprise setting, earnings conference call remains a rarely explored field. This thesis offers a descriptive study on assessing interpreting quality from perspectives of fidelity, fluency, and appropriacy. As the corpus, Tencent 2022 Third Quarter Result Announcement provides an ideal transcript to the author to conduct its analysis. Interpreting is frequently done without bearing in mind the multitude of factors that can affect the quality of interpreting. Drawing a conclusion that the interpreter does make a lot of omissions, pauses and hesitations posing a negative effect on the fidelity, fluency and accuracy of the interpreting, the present author suggests that more preparation should be done for improving performance, such as terminologies, company background information, a reasonable speech rate, good image and acoustic quality, and so on. 展开更多
关键词 interpreting Quality Assessment Earnings Conference Call Fidelity FLUENCY Appropriacy
下载PDF
Application of Secondary Logging Interpretation—Taking Yan 9 Reservoir in X Area as an Example
9
作者 Jiayu Li 《Journal of Geoscience and Environment Protection》 2024年第6期48-56,共9页
Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role ... Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role in fine reservoir description and reservoir development. Aiming at the problem of the conflict between the development effect and the initial interpretation result of Yan 9 reservoir in Hujianshan area of Ordos Basin, by combining the current well production performance, logging, oil test, production test and other data, on the basis of making full use of core, coring, logging, thin section analysis and high pressure mercury injection data, the four characteristics of reservoir are analyzed, a more scientific and reasonable calculation model of reservoir logging parameters is established, and the reserves are recalculated after the second interpretation standard of logging is determined. The research improves the accuracy of logging interpretation and provides an effective basis for subsequent production development and potential horizons. 展开更多
关键词 Secondary Logging interpretation Reserve Recalculation Yan 9 Reservoir
下载PDF
Effects and Causes of VR-Supported Interpreting Learning Environment on the Interpretation Classroom Anxiety of Student Interpreter
10
作者 Ruizhe Zhang Jinyu Liu 《Open Journal of Applied Sciences》 2024年第2期398-410,共13页
Interpreting activity is considered a high-anxiety activity due to its immediacy, multitasking, complexity of cognitive processing, and uncertainty of cognitive processing. Research has shown that interpreting anxiety... Interpreting activity is considered a high-anxiety activity due to its immediacy, multitasking, complexity of cognitive processing, and uncertainty of cognitive processing. Research has shown that interpreting anxiety, as the biggest emotional obstacle in the interpreting process, is the main emotional factor that leads to individual differences in interpreting. Students often claim to have fear or anxiety behaviors in interpreting exams, interpreting competitions, and interpreting classes. However, the research on interpreting teaching attaches importance to the cultivation of language knowledge, cultural knowledge, and interpreting skills, and does not pay enough attention to emotional factors such as motivation and anxiety in interpreting learning, which makes it difficult for the cultivated interpreters to meet the requirements of professional practice. In recent years, virtual reality technology (VR) has been gradually applied in the field of foreign language and interpreting teaching for creating a real, interactive and experiential language learning environment. Situated Learning Theory stresses that the fundamental mechanism for learning to take place is for individuals to participate in the real context in which knowledge is generated, and to realize the construction of knowledge through the interaction with the community of practice and the environment. Virtual reality technology can satisfy the needs of language learners for real contexts by providing learners with immersive, imaginative and interactive scenario simulations, and has a certain positive effect on alleviating learning anxiety. Therefore, relying on the virtual simulation course “United Nations Kubuqi International Desert Ecological Science and Technology Innovation International Volunteer Language Service Practical Training System”, this paper adopts a combination of quantitative and qualitative analyses to investigate the interpretation anxiety level of the interpreter trainees and the factors affecting them in the VR situation to help them discover effective responses to interpreter anxiety. 展开更多
关键词 interpreter Anxiety Virtual Reality Situated Cognition and Learning
下载PDF
Problems of Music Interpretation and Its Expression: On the Example of the Violin
11
作者 Nomuunaa Battogtokh Oyunbadrakh Baynjargal 《Philosophy Study》 2024年第2期73-80,共8页
Music is essentially a sonic phenomenon, an intangible art that we experience through our auditory organs. It is written as a physical note on paper. It is the result of harmony and composition of music that expresses... Music is essentially a sonic phenomenon, an intangible art that we experience through our auditory organs. It is written as a physical note on paper. It is the result of harmony and composition of music that expresses the meaning of music created from the author’s mind, thinking, skills, and feelings, or composition or work. If a composition is not interpreted by a musician and set to music, it is nothing more than a notation and notation written down on paper. The main process of conveying the composition to the listeners through the musician’s interpretation of the music is somewhat overlooked. Therefore, in this research, the musician’s thinking and editing method, and how to express it through interpretation, were the doctoral dissertation and articles of researchers such as have been studied in comparison. 展开更多
关键词 THINKING interpretATION creative activity musicianship EDITING
下载PDF
Application of STEEP and Interpretive Structural Modeling in the Design Imagery of Taiwan Public Ceramic Relief Murals
12
作者 Chuan-Chin Chen Jiann-Sheng Jiang Shaolei Zhou 《Journal of Contemporary Educational Research》 2024年第5期117-127,共11页
Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the... Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods. 展开更多
关键词 interpretive structural modeling(ISM) STEEP analysis Public ceramic relief murals(PCRM)
下载PDF
Why caution should be applied when interpreting and promoting findings from Mendelian randomisation studies 被引量:2
13
作者 Alice R Carter Abigail Fraser +2 位作者 Laura D Howe Sian Harris Amanda Hughes 《General Psychiatry》 CSCD 2023年第4期334-338,共5页
Introduction In their article entitled‘Investigating genetic causal relationships between blood pressure and anxiety,depressive symptoms,neuroticism and subjective well-being’,Cai and colleagues1 presented the resul... Introduction In their article entitled‘Investigating genetic causal relationships between blood pressure and anxiety,depressive symptoms,neuroticism and subjective well-being’,Cai and colleagues1 presented the results of a two-sample Mendelian randomisation2(MR)study examining associations between blood pressure traits(systolic,diastolic,hypertension and pulse pressure)and psychological traits(anxiety,depression,neuroticism and subjective well-being).After correction for multiple testing. 展开更多
关键词 random finding interpretING
下载PDF
An Interpretable CNN for the Segmentation of the Left Ventricle in Cardiac MRI by Real-Time Visualization 被引量:1
14
作者 Jun Liu Geng Yuan +2 位作者 Changdi Yang Houbing Song Liang Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1571-1587,共17页
The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation... The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation.However,existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs.Thus,the interpretability of CNNs has come into the spotlight.Since medical imaging data are limited,many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public Image Net datasets by the transfer learning method.Unfortunately,this generates many unreliable parameters and makes it difficult to generate plausible explanations from these models.In this study,we trained from scratch rather than relying on transfer learning,creating a novel interpretable approach for autonomously segmenting the left ventricle with a cardiac MRI.Our enhanced GPU training system implemented interpretable global average pooling for graphics using deep learning.The deep learning tasks were simplified.Simplification included data management,neural network architecture,and training.Our system monitored and analyzed the gradient changes of different layers with dynamic visualizations in real-time and selected the optimal deployment model.Our results demonstrated that the proposed method was feasible and efficient:the Dice coefficient reached 94.48%,and the accuracy reached 99.7%.It was found that no current transfer learning models could perform comparably to the ImageNet transfer learning architectures.This model is lightweight and more convenient to deploy on mobile devices than transfer learning models. 展开更多
关键词 interpretable graphics training VISUALIZATION image segmentation left ventricle CNNS global average pooling
下载PDF
A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability 被引量:1
15
作者 Zhijie Zhou Zhichao Ming +4 位作者 Jie Wang Shuaiwen Tang You Cao Xiaoxia Han Gang Xiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1165-1185,共21页
Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understan... Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method. 展开更多
关键词 Fault diagnosis belief rule base interpretABILITY weakening factors improved coordinate ascent
下载PDF
Project Management in College Students' Interpreting Practice 被引量:1
16
作者 孙瑾 《海外英语》 2019年第3期173-174,共2页
Nowadays, college students, as a main part of interpreters, have engaged more and more in interpreting practices in formsof foreign guests’reception, telephone interpreting, escort interpreting and consecutive interp... Nowadays, college students, as a main part of interpreters, have engaged more and more in interpreting practices in formsof foreign guests’reception, telephone interpreting, escort interpreting and consecutive interpreting, etc. However, these practicesstill remain a lot of problems, such as low quality, disordered management and improper resource utilization, which are in urgentneed of systematic interpreting project management. Combined with the features of students’interpreting practice, students-oriented interpreting project can better manage these problems above and build a standardized and effective language servicegroup. After summarizing the features of students’interpreting practice, this paper will focus on the concrete application of interpreting project management in college students’interpreting practice. Furthermore, this paper will also provide specific work flowand methods in students-oriented interpreting project. 展开更多
关键词 interpretING PROJECT MANAGEMENT interpretING PROJECT MANAGEMENT students’interpreting practice students-oriented interpretING PROJECT PROJECT MANAGER CONSULTANT interpretER
下载PDF
RMA-CNN:A Residual Mixed Domain Attention CNN for Bearings Fault Diagnosis and Its Time-Frequency Domain Interpretability 被引量:1
17
作者 Dandan Peng Huan Wang +1 位作者 Wim Desmet Konstantinos Gryllias 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期115-132,共18页
Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varyin... Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varying working conditions can lead to inter-class similarity and intra-class variability in datasets,making it more challenging for CNNs to learn discriminative features.Furthermore,CNNs are often considered“black boxes”and lack sufficient interpretability in the fault diagnosis field.To address these issues,this paper introduces a residual mixed domain attention CNN method,referred to as RMA-CNN.This method comprises multiple residual mixed domain attention modules(RMAMs),each employing one attention mechanism to emphasize meaningful features in both time and channel domains.This significantly enhances the network’s ability to learn fault-related features.Moreover,we conduct an in-depth analysis of the inherent feature learning mechanism of the attention module RMAM to improve the interpretability of CNNs in fault diagnosis applications.Experiments conducted on two datasets—a high-speed aeronautical bearing dataset and a motor bearing dataset—demonstrate that the RMA-CNN achieves remarkable results in diagnostic tasks. 展开更多
关键词 attention interpretability CNN fault diagnosis rolling element bearings
下载PDF
Interpretable machine learning optimization(InterOpt)for operational parameters:A case study of highly-efficient shale gas development
18
作者 Yun-Tian Chen Dong-Xiao Zhang +1 位作者 Qun Zhao De-Xun Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1788-1805,共18页
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne... An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells. 展开更多
关键词 interpretable machine learning Operational parameters optimization Shapley value Shale gas development Neural network
下载PDF
Classification and structural characteristics of amorphous materials based on interpretable deep learning
19
作者 崔佳梅 李韵洁 +1 位作者 赵偲 郑文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期356-363,共8页
Defining the structure characteristics of amorphous materials is one of the fundamental problems that need to be solved urgently in complex materials because of their complex structure and long-range disorder.In this ... Defining the structure characteristics of amorphous materials is one of the fundamental problems that need to be solved urgently in complex materials because of their complex structure and long-range disorder.In this study,we develop an interpretable deep learning model capable of accurately classifying amorphous configurations and characterizing their structural properties.The results demonstrate that the multi-dimensional hybrid convolutional neural network can classify the two-dimensional(2D)liquids and amorphous solids of molecular dynamics simulation.The classification process does not make a priori assumptions on the amorphous particle environment,and the accuracy is 92.75%,which is better than other convolutional neural networks.Moreover,our model utilizes the gradient-weighted activation-like mapping method,which generates activation-like heat maps that can precisely identify important structures in the amorphous configuration maps.We obtain an order parameter from the heatmap and conduct finite scale analysis of this parameter.Our findings demonstrate that the order parameter effectively captures the amorphous phase transition process across various systems.These results hold significant scientific implications for the study of amorphous structural characteristics via deep learning. 展开更多
关键词 AMORPHOUS interpretable deep learning image classification finite scale analysis
下载PDF
Interpreting Randomly Wired Graph Models for Chinese NER
20
作者 Jie Chen Jiabao Xu +2 位作者 Xuefeng Xi Zhiming Cui Victor S.Sheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期747-761,共15页
Interpreting deep neural networks is of great importance to understand and verify deep models for natural language processing(NLP)tasks.However,most existing approaches only focus on improving the performance of model... Interpreting deep neural networks is of great importance to understand and verify deep models for natural language processing(NLP)tasks.However,most existing approaches only focus on improving the performance of models but ignore their interpretability.In this work,we propose a Randomly Wired Graph Neural Network(RWGNN)by using graph to model the structure of Neural Network,which could solve two major problems(word-boundary ambiguity and polysemy)of ChineseNER.Besides,we develop a pipeline to explain the RWGNNby using Saliency Map and Adversarial Attacks.Experimental results demonstrate that our approach can identify meaningful and reasonable interpretations for hidden states of RWGNN. 展开更多
关键词 Named entity recognition graph neural network saliency map random graph network interpretATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部