Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the...Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.展开更多
为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural...为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。展开更多
Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-R...Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.展开更多
文摘Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.
文摘为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。
基金The Major National Science and Technology Programs of China under contract No.2011ZX05025-003-005the Joint Program of the National Science Foundation and Guangdong Province under contract No.U1301233
文摘Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.