期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Roles of raindrop impact in detachment and transport processes of interrill soil erosion
1
作者 Xunchang John Zhang 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第4期592-601,共10页
To date the roles of raindrop impact in sediment entrainment and transport processes of interrill soil erosion are not yet fully quantified.The objectives are to 1)evaluate the effects of raindrop impact on sediment e... To date the roles of raindrop impact in sediment entrainment and transport processes of interrill soil erosion are not yet fully quantified.The objectives are to 1)evaluate the effects of raindrop impact on sediment entrainment,2)systematically quantify the relative importance of raindrop-driven and flow-driven transport,and 3)characterize sediment size distributions in different sediment transport re-gimes.A loam soil with 48.4%sand and 23%clay was packed into flumes(L × W × H:1.8 × 0.5 × 0.1 m)and subjected to intensities of 60,90,120 mm h^(-1) at gradients of 5,10,and 16°.Air filter and tarp covers were used to vary impact energy and flow length.Results show that sediment is largely entrained by raindrop impact and transported by raindrop-impacted flow.Interrill erosion consists of two composite processes:raindrop-induced detachment/entrainment and raindrop-impacted flow transport.The former includes direct detachment by raindrop impact and'flow detachment'.The latter includes raindrop-driven and flow-driven transports.The proportions between the two transports vary with slope steepness,slope length,flow depth(or flow discharge),rainfall intensity,and sediment characteristics.Raindrop-driven transport is competent but inefficient,while the opposite is true for flow-driven transport.Because raindrop impact plays dual roles in detaching soil(and/or entraining sediment)and enhancing sediment transport,a drop energy factor must be included in interrill erosion models to adequately simulate the dual roles.More studies are required to derive a drop energy function that takes into consideration the rainfall energy dissipation by canopies of various plants under natural conditions. 展开更多
关键词 interrill erosionprocess Raindrop detachment Raindropentrainment Raindrop-driven transport Flow-driven transport Raindrop-flow interaction
原文传递
Quantifying spatial distribution of interrill and rill erosion in a loess at different slopes using structure from motion(SfM)photogrammetry
2
作者 Tao He Yang Yang +5 位作者 Yangzi Shi Xiaozhen Liang Suhua Fu Gege Xie Baoyuan Liu Yingna Liu 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第3期393-406,共14页
The spatial distribution of interrill and rill erosion is essential for unravelling soil erosion principles and the application of soil and water conservation practices.To quantify interrill and rill erosion and their... The spatial distribution of interrill and rill erosion is essential for unravelling soil erosion principles and the application of soil and water conservation practices.To quantify interrill and rill erosion and their spatial development,four 30-min rainfalls at 90 mm h^(-1)intensity were consecutively simulated on runoff plots packed with a loess at six slopes of 10°,15°,20°,25°,30°and 35°.The soil surface was measured using the structure from motion(SfM)photogrammetry upon each simulation run,and the runoff and sediment samples were collected and measured at every 10 min.Rills did not develop until the third simulation run.During the initial two runs,the lower third section was more severely eroded than the upper and middle thirds along the slope direction,yet the interrill erosion was statistically uniform from left to right.Rills tended to emerge by both sidewalls and in the lower portion in the third run.The corresponding rill erosion increased with slope from 10°to 20°and then decreased for the slopes steeper,which was consistent with the slope trend of the sediment yield directly measured.The rills expanded substantially primarily via head retreat and to a lesser extent via sideward erosion after receiving another 30-min rainfall.Rill erosion contributed 69.3%of the total erosion loss,and shifted the critical slope corresponding to the maximum loss from 20°to 25°.These findings demonstrate the significance of rill erosion not only in total soil loss but also in its relation to slope,as well as the effectiveness of SfM photogrammetry in quantifying interrill and rill erosion. 展开更多
关键词 interrill and rill erosion Spatial distribution Structure from motion(SfM) PHOTOGRAMMETRY SLOPE Rainfall simulation
原文传递
Evaluation of an erosion-sediment transport model for a hillslope using laboratory flume data 被引量:3
3
作者 Anya Catherine CARGUELLES MinJae JUNG +7 位作者 Kristine Joy BMALLARI GiJung PAK Hafzullah AKSOY Levent M KAVVAS Ebru ERIS JaeYoung YOON YoungJoon LEE SeonHwa HONG 《Journal of Arid Land》 SCIE CSCD 2014年第6期647-655,共9页
Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sedi... Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sediments in order to provide measures for sound erosion control and water quality management. The presence of micro- topography on hillslopes influences processes of runoff generation and erosion, which should be taken into account to achieve more accurate modelling results. This study presents a physically based mathematical model for erosion and sediment transport coupled to one-dimensional overland flow equations that simulate rainfall-runoff generation on the rill and interrill areas of a bare hillslope. Modelling effort at such a fine resolution considering the flow con- nection between Jnterrill areas and rills is rarely verified. The developed model was applied on a set of data gath- ered from an experimental setup where a 650 cm×136 cm erosion flume was pre-formed with a longitudinal rill and interrJll having a plane geometry and was equipped with a rainfall simulator that reproduces natural rainfall characteristics. The flume can be given both longitudinal and lateral slope directions. For calibration and validation, the model was applied on the experimental results obtained from the setup of the flume having 5% lateral and 10% longitudinal slope directions under rainfall intensities of 105 and 45 mm/h, respectively. Calibration showed that the model was able to produce good results based on the R2 (0.84) and NSE (0.80) values. The model performance was further tested through validation which also produced good statistics (R2=0.83, NSE=0.72). Results in terms of the sedigraphs, cumulative mass curves and performance statistics suggest that the model can be a useful and an important step towards verifying and improving mathematical models of erosion and sediment transport. 展开更多
关键词 climate change EROSION rill and interrill physically based model sediment transport
下载PDF
Effect of Slope Gradient on Erosion Evolution Process at Microtopographic Tillage Soil Surfaces
4
作者 Wei Zheng Hui Zhang +3 位作者 Yun Jiang Xin Zhang Yawen Tong Qingfeng Zhang 《Journal of Geographic Information System》 2019年第5期481-492,共12页
Slope gradient is one of the critically important factors which drive the erosional response of microtopographic surfaces. This study investigates the effect of slope gradient on the evolution of erosion under accumul... Slope gradient is one of the critically important factors which drive the erosional response of microtopographic surfaces. This study investigates the effect of slope gradient on the evolution of erosion under accumulative rainfall in laboratory experiments and calculates critical slope values that help evaluate land suitability for farming and similar purposes. Dynamics of accumulative runoff, accumulated sediment and their rates in each erosion stage are studied when the slope gradient varies. The critical slope value for the microtopographic surface was calculated according to the relationship between the sediment yield and slope gradient. The amount of eroded soil downhill in each erosion stage was calculated using DEM data of point cloud. Results show that 1) a steeper slope would increase cumulative runoff;2) cumulative sediment increases rapidly initially and then stabilizes with the increase of slope;3) the critical slope value for the whole erosion is determined as 10&deg;. The findings of the dynamics of interrill erosion and sediment characteristics are useful information for future research of erosion prediction and conservation of soil and water in the Chinese Loess Plateau. 展开更多
关键词 Critical SLOPE VALUES CUMULATIVE RUNOFF CUMULATIVE Sediment interrill EROSION Rate of EROSION
下载PDF
Structure-from-Motion Photogrammetry and Rare Earth Oxides can quantify diffuse and convergent soil loss and source apportionment
5
作者 Pia Benaud Karen Anderson +3 位作者 Mike R.James Timothy A.Quine John N.Quinton Richard E.Brazier 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第4期633-648,共16页
Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(inte... Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(interrill areas).The aim of this study was to use Rare Earth Oxide(REO)tracers and Structure-from-Motion(SfM)photogrammetry to elucidate retrospective information about soil erosion rates and sediment sources during different soil erosion conditions,within a controlled laboratory environment.The experimental conditions created erosion events consistent with diffuse and convergent erosion processes.REO tracers allowed the sediment transport distances of over 2 m to be described,and helped resolved the relative contribution of diffuse and convergent soil erosion;interrill areas were also iden-tified as a significant sediment sources soil loss under convergent erosion conditions.While the potential for SfM photogrammetry to resolve sub-millimetre elevations changes was demonstrated,under some conditions non-erosional changes in surface elevation,such as compaction,exceeded volumes of soil loss via diffuse erosion.The discrepancies between SfM Photogrammetry calculations and REO tagged sediment export were beneficial,identifying that during soil erosion events sediment in both aggregate and particle form is deposited within the convergent features,even when the rill extended the full length of the soil surface.The combination of SfM photogrammetry and REO tracers has provided a novel platform for building a spatial understanding of patterns of soil loss and source apportionment between rill and interrill erosion. 展开更多
关键词 Soil erosion Structure-from-Motion Photogrammetry Rare Earth Oxides Tracers Sediment Rainfall simulator Sheetwash Rilling interrill
原文传递
模拟降雨条件下泥沙荷载随坡面侵蚀过程的变化(英文) 被引量:5
6
作者 孙莉英 方海燕 +4 位作者 蔡强国 杨希华 和继军 周俊良 王训明 《Journal of Geographical Sciences》 SCIE CSCD 2019年第6期1001-1020,共20页
It is of great significance to quantify sediment load changing with erosion processes for improving the precision of soil loss prediction. Indoor rainfall experiments were conducted in 2 rainfall intensities(90 mm... It is of great significance to quantify sediment load changing with erosion processes for improving the precision of soil loss prediction. Indoor rainfall experiments were conducted in 2 rainfall intensities(90 mm·h^(-1) and 120 mm·h^(-1)), four slope gradients(17.60%, 26.80%, 36.40%, 46.60%) and 2 slope lengths(5 m, 10 m). Erosion processes are divided into five stages. Results show that sediment yield is mainly sourced from rill erosion, contributing from 54.60% to 95.70% and the duration of which is extended by slope gradients. Sediment load and sediment concentration are significantly different along erosion stages, with the highest values in rill development stage(SIV). Surface flow velocities(interrill and rill) demonstrate less significant differences along erosion stages. Rainfall intensity increases sediment load in all stages, with up to 12.0 times higher when changing from 90 to 120 mm·h^(-1). There is an increasing trend for sediment load and sediment concentration with the rising slope gradient, however, fluctuations existed with the lowest values on 26.80% and 36.40%, respectively, among different treatments. The slope gradient effects are enhanced by rainfall intensity and slope length. Results from this study are important for validating and improving hillslope erosion modelling at each erosion stage. 展开更多
关键词 RAINFALL simulation EROSION experiments RILL EROSION interrill EROSION SEDIMENT load
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部