By using transmission electron microscopy and electron back-scattered diffraction, the effect of annealing temperature on the precipitation behavior and texture evolution in a warm-rolled interstitial-free high streng...By using transmission electron microscopy and electron back-scattered diffraction, the effect of annealing temperature on the precipitation behavior and texture evolution in a warm-rolled interstitial-free high strength steel was studied. The results indicated that fine FeTiP could precipitate at 650 ℃, and the number of those precipitates increased greatly with the increasing annealing temperature until 800 ℃. Furthermore, the nucleation of FeTiP was influenced by the precipitation of TiC and (Ti, Nb) C. The near absence of FeTiP and a large volume fraction of TiC and (Ti, Nb) C in matrix are envisaged to be primarily responsible for the sharp y-fiber texture. As the boundary pinning effect caused by FeTiP is weak and there are less interstitial C atoms in matrix. Thus, annealing at 800 ℃ leads to the highest intensity of y-fiber texture.展开更多
基金supported by the National Basic Research Program of China (No. 2011CB606306-2)
文摘By using transmission electron microscopy and electron back-scattered diffraction, the effect of annealing temperature on the precipitation behavior and texture evolution in a warm-rolled interstitial-free high strength steel was studied. The results indicated that fine FeTiP could precipitate at 650 ℃, and the number of those precipitates increased greatly with the increasing annealing temperature until 800 ℃. Furthermore, the nucleation of FeTiP was influenced by the precipitation of TiC and (Ti, Nb) C. The near absence of FeTiP and a large volume fraction of TiC and (Ti, Nb) C in matrix are envisaged to be primarily responsible for the sharp y-fiber texture. As the boundary pinning effect caused by FeTiP is weak and there are less interstitial C atoms in matrix. Thus, annealing at 800 ℃ leads to the highest intensity of y-fiber texture.